MATH 255: Lecture 10

The Riemann Integral: Lebesgue's Integrability Criterion

Definition. A set S of real numbers is said to have measure zero if, for every $\epsilon > 0$, the set S is contained in a countable union of intervals, the sum of whose lengths is less than ϵ .

Theorem. If $S_1, S_2, \ldots, S_n, \ldots$ are each of measure zero then their union is also of measure zero.

Proof. Each set S_k can be covered by a countable union of intervals, the sum of whose lengths $\langle \epsilon/2^k$. The union of all the intervals so obtained is also countable and the sum of the lengths is less than $\sum_{1}^{\infty} 1/2^k = \epsilon$.

QED

A countable set is of measure zero but there are uncountable sets of measure zero. For example, the Cantor set consisting of all the real numbers in the interval [0, 1] whose representation to the base 3 contain only 0 or 2, is an uncountable set of measure zero. The proof of this is left as an exercise.

Definition. Let f be a bounded function defined on a subset $S \subseteq \mathbb{R}$. The oscillation of f on S is

$$\Omega_f(S) = \sup_{x,y \in S} |f(x) - f(y)|.$$

If $T \subseteq S$, we have $\Omega_f(T) \leq \Omega_f(S)$. Let $N_r(c) = \{x \mid |x - c| < r\}$.

Definition. If f is a bounded function on S and $c \in S$, the oscillation of f at c is defined to be

$$\omega_f(c) = \inf_{r>0} \Omega_f(S \cap N_r(c))$$

Exercise 1. If f is a bounded function on S and $c \in S$, then f is continuous at $c \iff \omega_f(c) = 0$.

Theorem (Lebesgue's Integrability Criterion). A bounded function on [a, b] is Riemann integrable if and only if the points of discontinuity of f form a set D of measure zero.

Proof. (\Rightarrow) Let $\epsilon > 0$ be given and let D_i be the set of points x with $\omega_f(x) \ge \epsilon/2^i$. Let P be the partition $\{a = x_0 < x_1 < \cdots < x_n = b\}$ of [a, b] with

$$U(P,f) - L(P,f) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \frac{\epsilon}{4^i}.$$

If $x \in D_i \cap (x_{k-1}, x_k)$ there is an r > 0 such that $N_r(x) \subseteq (x_{k-1}, x_k)$ so that

$$\frac{\epsilon}{2^i} \le \omega_f(x) \le \Omega_f(N_r(x)) \le M_k - m_k.$$

If T is the set of these k with $D_i \cap (x_{k-1}, x_k) \neq \emptyset$, it follows that

$$\frac{\epsilon}{2^i} \sum_{k \in T} \Delta x_k \le \sum_{k=1}^n (M_k - m_k) \Delta x_k < \frac{\epsilon}{4^i}.$$

Hence $\sum_{k \in T} [x_k - x_{k-1}] < \epsilon/2^i$ and $D_i \subseteq \bigcup_{k \in T} [x_{k-1}, x_k]$. This shows that each D_i is contained in the union of a finite number of intervals, the sum of whose lengths is less than $\epsilon/2^i$. Since $D = \bigcup D_i$, it follows that D is of measure zero.

(\Leftarrow) Let M > 0 be an upper bound for |f| on [a, b] and let $\epsilon > 0$ be given. Since D is of measure zero, it can be covered by open intervals J_i , $(i \ge 1)$, the sum of whose lengths is less that $\epsilon/4M$. We now define a function δ on [a, b] as follows:

- 1. If $t \in D$, there is a k such that $t \in J_k$. Thus there is a $\delta(t) > 0$ such that $N_{\delta(t)}(t) \subseteq J_k$.
- 2. If $t \notin D$, there is a $\delta(t) > 0$ such that $x \in N_{\delta(t)}(t) \Rightarrow |f(x) f(t)| < \epsilon/4(b-a)$.

Lemma. If δ is a function on [a, b] such that $\delta(x) > 0$ for all x, there is a partition

$$P = \{a = x_0 < x_1 < \dots < x_n = b\}$$

of [a, b] and a tag t for P such that for all k we have $[x_{k-1}, x_k] \subseteq N_{\delta(t_k)}(t_k)$.

We call such a tagged partition δ -fine with gauge δ .

Proof. Let S be the set of those $x \in [a, b]$ such that there is a δ -fine tagged partition of [a, x]. The set s is not empty since, for any $c \in [a, b]$ with $a < c < a + \delta(a)$, the partition $\{a, c\}$ with tag a of [a, c] is δ -fine. If $x \in S$ and x < b, we can choose c so that $x < c < \min(b, x + \delta(x))$. If (P, t) is a δ -fine partition of [a, x], then $(P \cup \{c\}, (t, c))$ is a δ -fine tagged partition of [a, c]. This shows that $\sup S = b$. To show that $b \in S$, choose $c \in S$ so that $\max(a, b - \delta(b)) < c < b$. If (P, t) is a δ -fine partition of [a, c], then $(P \cup \{b\}, (t, b))$ is a δ -fine tagged partition of [a, b]. QED

Let (P, t) be a δ -fine tagged partition of [a, b] and consider

$$U(P,f) - L(P,f) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = \sum_{k \in A} (M_k - m_k) \Delta x_k + \sum_{k \in B} (M_k - m_k) \Delta x_k,$$

where A is the set of the k with $t_k \in D$ and B the set of those k with $t_k \notin D$. If $k \in A$, we have $M_k - m_k \leq 2M$ and we have $M_k - m_k < \epsilon/2(b-a)$ if $k \in B$. The sum of the lengths of the intervals $J_{k,i} = J_k \cap [x_{k-1}, x_k]$ with $k \in A$ and $i \geq 1$ is less than $\epsilon/4M$ and the sum of the lengths of the intervals for a fixed $k \in A$ is $\geq \Delta x_k$. Since $J_{k,i} \cap J_{\ell,j} = \emptyset$ for $k \neq \ell$, it follows that $\sum_{k \in A} \Delta x_k$ is less than the sum of the lengths of the intervals $J_{k,i}$. Hence,

$$\sum_{k \in A} (M_k - m_k) \Delta x_k \le 2M \sum_{k \in A} \Delta x_k < 2M \frac{\epsilon}{4M} = \frac{\epsilon}{2}, \qquad \sum_{k \in B} (M_k - m_k) \Delta x_k < \frac{\epsilon}{2(b-a)} \sum_{k \in B} \Delta x_k \le \frac{\epsilon}{2}$$

QED

which gives $U(P, f) - L(P, f) < \epsilon$. Since $\epsilon > 0$ is arbitrary, $f \in \mathcal{R}(a, b)$.