MATH 255: Assignment 7

(due Wednesday, March 12)

- 1. (a) If $\lim_{n\to\infty} a_n = a$, show that $\sum_{n=1}^{\infty} (a_{n+1} a_n) = a a_1$. (b) Show that $\sum_{n=2}^{\infty} \log(1 1/n^2) = -\log 2$.
- 2. (a) Give an example of a convergent series $\sum a_n$ such that $\sum a_n^2$ diverges.
 - (b) What happens if $\sum a_n$ is absolutely convergent?
- (a) If (a_n) is a positive decreasing sequence and $\sum a_n$ converges, prove that $\lim_{n\to\infty} na_n = 0$. Hint: Use the Cauchy Criterion.
 - (b) Give an example of a divergent positive series $\sum a_n$ with (a_n) decreasing and $\lim_{n\to\infty} na_n = 0$.
- 4. Determine the convergence or divergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}}$$
, (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$.