MATH 255: Assignment 4

(due Monday, February 10)

- 1. (a) If f is a bounded function on [a, b] such that f is Riemann integrable on [c, b] for all a < c < b, prove that f is Riemann integrable on [a, b].
 - (b) If f is the function on [0,1] defined by f(0) = 0 and $f(x) = \sin(1/x)$ if $x \neq 0$, prove that $f \in \mathcal{R}(0,1)$.
- 2. Which of the following functions f are of bounded variation on [0,1]?
 - (a) f(0) = 0, $f(x) = x^2 \sin(1/x)$ if $x \neq 0$;
 - (b) f(0) = 0, $f(x) = \sqrt{x}\sin(1/x)$ if $x \neq 0$.

Justify your answers.

3. Let α , f be functions on [a,b] with α is strictly increasing and f is continuous. If $f(x) \geq 0$ on [a,b], show that

$$\int_{a}^{b} f(x) d\alpha(x) = 0 \implies f = 0.$$

4. Let $f \in \mathcal{R}(a,b)$ and let $g(x) = \int_a^x f(t) dt$ if $x \in [a,b]$. Prove that the total variation of g on [a,x] is equal to $\int_a^x |f(t)| dt$.