The Spectral Theorem

Let V be a finite-dimensional inner-product space. The mapping $b_R : V \to V^*$ defined by $b_R(v) = \phi_v$, where $\phi_v(u) = \langle u, v \rangle$, is bijective. It is linear if V is real and conjugate linear if V is complex. If $T: U \to V$ is a linear mapping of finite-dimensional inner-product spaces, then there is a unique mapping $T^*: V \to U$ such that

$$T^t(\pi_v) = \phi_{T^*(v)}.$$

Since $T^t(\phi_v) = \phi_v \circ T$, this is equivalent to

$$< T(u), v > = < u, T^{*}(v) >$$

for all $u \in U, v \in V$. The mapping T^* is called the **adjoint** of T. Since

$$< u, T^*(c_1v_v + c_2v_2) > = < T(u), c_1v_v + c_2v_2) >$$

= $\overline{c}_1 < T(u), v_1) + \overline{c}_1 2 < T(u), v_2)$
= $\overline{c}_1 < u, T^*(v_1)) + \overline{c}_1 2 < u, T^*(v_2))$
= $< u, c_1 T^*(v_1) + c_2 T^*(v_2),$

we see that T^* is a linear mapping. We also have

$$(aS+bT)^* = \overline{a}S^* + \overline{b}T^*, \quad T^{**} = T.$$

The proof of this is left as an exercise.

If e, f are orthonormal bases of U, V respectively, we have

$$\langle T(u), v \rangle = [T(u)]_f^t \overline{[v]}_f = X^t A^t \overline{Y} = X^t \overline{A^* Y}$$

where $X = [u]_e, Y = [v]_f, A = [T], A = [T]_e^f, A^* = \overline{A}^t$. Since $\langle u, T^*(v) \rangle = X^t \overline{BY}$, where $B = [T^*]_f^e$ we see that $B = A^*$. Thus, for orthonormal bases e, f, we have

$$[T^*]_f^e = ([T]_e^f)^*.$$

The matrix A^* is called the adjoint of A. If T is a linear operator on V then T is said to be **self-adjoint** if $T = T^*$ and **normal** if $T^*T = TT^*$.

For example, if $A \in \mathbb{C}^{n \times n}$, then the linear operator T_A on $\mathbb{C}^{n \times 1}$ defined by $T_A(X) = AX$ is self-adjoint if and only if A is Hermitian. If $A \in \mathbb{R}^{n \times n}$, then the linear operator T_A on $\mathbb{R}^{n \times 1}$ defined by $T_A(X) = AX$ is self-adjoint if and only if A is symmetric.

If $T: U \to V$ is a linear mapping of inner product spaces then if a linear mapping $S: V \to U$ satisfies

$$\langle T(u), v \rangle = \langle u, S(v) \rangle$$

for all $u \in U, v \in V$ it is unique as is called the adjoint of T and denoted by T^* . For example, in the space ℓ^2 , the adjoint of the left-shift operator L is the right-shift operator R since

$$< L(x), y> = \sum_{n=0}^{\infty} x_{n+1} \overline{y}_n = \sum_{n=1}^{\infty} x_n \overline{y}_{n-1} = < x, R(y) > .$$

A linear operator T on an inner-product space V is said to be self-adjoint if $T = T^*$ which is equivalent to

$$\langle T(u), v \rangle = \langle u, T(v) \rangle$$

for all $u, v \in V$.

A linear operator on an inner-product space V is said to be **orthogonally diagonalizable** if there is a basis of V consisting of eigenvectors of T.

Theorem 1 (Spectral Theorem). Let T be a linear operator on a finite-dimensional inner product space V. Then T is orthogonally diagonalizable if and only if T is normal.

Proof. (\implies) If $e = (e_1, \ldots, e_n)$ is an orthonormal basis of eigenvectors of T then

$[T]_{e} =$	λ_1	0		0	,	$[T^*]_e =$	$\overline{\lambda}_1$	0	• • •	0
	0	λ_2	• • •	0			0	λ_2	• • •	0
	÷	÷	·	:			:	÷	·	:
	0	0	• • •	λ_n			0	0		$\overline{\lambda}_n$

which shows that T, T^* commute.

(\Leftarrow) We proceed by induction on $n = \dim(V)$, the case n = 0 being trivial. Let λ be an eigenvalue of T and let $W = \operatorname{Ker}(T - \lambda)$. Then W is T-invariant which implies that W is T^* -invariant since T and T^* commute. If $w \in W$, $v \in W^{\perp}$ then

$$< T(v), w > = < v, T^*(w) > = 0$$

which implies that W^{\perp} is *T*-invariant. If *S* is the restriction *T* to W^{\perp} then *S** is the restriction of *T** to S^{\perp} so that *S* is a normal operator on the inner-product space W^{\perp} . Since dim $(W^{\perp}) < n$, our inductive hypothesis implies that W^{\perp} has an orthogonal basis B_1 consisting of eigenvectors of *S*. Since eigenvectors of *S* are also eigenvectors of *T* and $V = W \oplus W^{\perp}$ we obtain an orthogonal basis *B* of *V* consisting of eigenvectors of *T* eigenvectors of *T* by taking $B = B_1 \cup B_2$, where B_2 is an orthogonal basis of *W*.

Corollary 2. If T is a normal operator then eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

This is true even if V is infinite-dimensional. Indeed, if T is normal we have

$$||T(u)||^{2} = \langle T(u), T(u) \rangle = \langle u, T^{*}T(u) \rangle = \langle u, TT^{*}(u) \rangle = \langle T^{*}(u), T^{*}(u) \rangle = ||T^{*}(u)||^{2}$$

Thus $||(T - \lambda)(u)|| = ||(T^* - \overline{\lambda})(u)||$ so that $T(u) = \lambda u \iff T^*(u) = \overline{\lambda}u$. Hence if $T(u) = \lambda u$ and $T(v) = \mu v$ we have

$$\lambda < u, v \rangle = <\lambda u, v \rangle =$$

which implies $(\lambda - \mu) < u, v \ge 0$ and hence $\langle u, v \ge 0$.

Corollary 3. If $A \in \mathbb{C}^{n \times n}$ is a normal matrix $(AA^* = A^*A)$ then there is an invertible matrix $P \in \mathbb{C}^{n \times n}$ whose columns are orthonormal for the standard inner product on $\mathbb{C}^{n \times n}$ such that $P^{-1}AP$ is a diagonal matrix.

The columns of $P \in \mathbb{C}^{n \times n}$ are orthonormal if and only if $P^T \overline{P} = I$ which is equivalent to $P^{-1} = P^*$. Such a complex matrix is called **unitary**. Two complex matrices A, B are said to be unitarily equivalent if there exists a unitary matrix P such that $B = P^{-1}AP$ or, equivalently, $B = P^*AP$.

Corollary 4. If T is self-adjoint then the eigenvalues of T are real.

This is true even if V is infinite-dimensional. Indeed, if $T(u) = \lambda u$ and $u \neq 0$ then

$$\lambda < u, u > = <\lambda u, u > = = = = \lambda < u, u > =$$

which implies $\lambda = \overline{\lambda}$ on cancelling $\langle u, u \rangle = ||u||^2$ which is $\neq 0$.

Corollary 5. If T is a linear operator on a finite dimensional real inner product space then T is orthogonally diagonalizable if and only if T is self-adjoint.

Corollary 6. If A is a real symmetric $n \times n$ matrix there exists an invertible real matrix P with orthonormal columns with respect to the standard inner product on $\mathbb{R}^{n \times n}$ such that $P^{-1}AP$ is a diagonal matrix.

The columns of $P \in \mathbb{R}^{n \times n}$ are orthonormal if and only if $P^T P = I$ which is equivalent to $P^{-1} = P^t$. Such a real matrix is called **orthogonal**. Two real matrices A, B are said to be orthogonally equivalent if there exists an orthogonal matrix P such that $B = P^{-1}AP$ or, equivalently, $B = P^t AP$.

If T is a diagonalizable operator on a finite-dimensional vector space V and μ_1, \ldots, μ_s are the distinct eigenvalues of T then

$$V = \operatorname{Ker}(T - \mu_1) \oplus \operatorname{Ker}(T - \mu_2) \oplus \cdots \oplus \operatorname{Ker}(T - \mu_s)$$

Hence any $v \in V$ can be uniquely written in the form $v = v_1 + v_2 + \cdots + v_s$ with $v_i \in V_i = \text{Ker}(T - \mu_i)$. The operators Q_i on V defined by $Q_i(v) = v_i$ are linear and satisfy

$$1 = Q_1 + Q_2 + \dots + Q_n, \quad Q_i Q_j = \delta_{ij}.$$

Since $TQ_i = \mu_i Q_i$, we have

$$T = \mu_1 Q_i + \mu_2 Q_2 + \dots + \mu_s Q_s$$

This is the **spectral decomposition** of T. If V is an inner product space and V is self-adjoint then the operator Q_i is orthogonal projection onto V_i . This operator is self-adjoint.

If p(X) is any polynomial in X then

$$p(T) = p(\mu_1)Q_1 + p(\mu_2)Q_2 + \dots + p(\mu_s)Q_s$$

If $c_i^m = \mu_i$ for $1 \le i \le s$ and

$$S = c_1 Q_1 + c_2 Q_2 + \dots + c_s Q_s$$

then $S^m = T$.

If A is a real or complex $n \times n$ matrix which is orthogonally diagonalizable and u_1, \ldots, μ_n is an orthogonal basis of eigenvectors with $Au_i = \lambda_i u_i$ then $P_i = u_i u_i^*$ is the matrix of orthogonal projection onto Span(u_i) so that

$$I = P_1 + P_2 + \dots + P_n, \quad P_i P_j = \delta_{ij} I, \quad A P_i = A P_i.$$

Hence $A = \lambda_1 P_1 + \lambda_2 P_2 + \cdots + \lambda_n P_n$ is a spectral decomposition of A into a linear combination of rank 1 self-adjoint matrices P_i . To get the spectral decomposition of A let μ_1, \ldots, μ_s be the distinct eigenvalues of A and let

$$Q_i = \sum_{\lambda_j = \mu_i} P_j.$$

Then $A = \mu_1 Q_1 + \mu_2 Q_2 + \dots + \mu_s Q_s$ is the spectral decomposition of A.

Example 1. If A is the real symmetric matrix $\begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$, we have $(A - 1)^2 = 4(A - 1)$

and so (A-1)(A-5) = 0. The eigenspace for the eigenvalue 1 has as orthonormal basis $f_1 = (1/\sqrt{2})(1, -1, 0, 0)^t$, $f_2 = (1/\sqrt{6})(1, 1, -2, 0)^t$, $f_3 = (1/2\sqrt{3})(1, 1, 1, -3)^t$. The eigenspace for the eigenvalue 5 is one-dimensional with basis the unit vector $f_4 = (1/2)(1, 1, 1, 1)^t$. The matrix

$$P = [1_{\mathbb{R}^4}]_f^e = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{6} & \sqrt{3}/2 & 1/2 \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/2\sqrt{3} & 1/2 \\ 0 & -2/\sqrt{6} & 1/2\sqrt{3} & 1/2 \\ 0 & 0 & -3/2\sqrt{3} & 1/2 \end{bmatrix}$$

is an orthogonal matrix with

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

If $P_i = f_i f_i^t$, we have

We have $A = P_1 + P_2 + P_3 + 5P_4 = Q_1 + 5Q_2$, where

We thus have $A^n = Q_1 + 5^n Q_2$ for all $n \in \mathbb{Z}$ and, if $B = \sqrt{A} = Q_1 + \sqrt{5}Q_2$, we have $B^2 = A$.

As another application of this consider $e^{tA} = e^tQ_1 + e^{5t}Q_2$ with $t \in \mathbb{R}$. Then e^{tA} is a matrix $C = [c_{ij}(t)]$ whose entries are differentiable real valued functions $c_{ij}(t)$ of t. If we define the derivative of C = C(t) to be $\frac{dC}{dt} = C'(t) = [c'_{ij}(t)]$, we have $\frac{d}{dt}e^{tA} = e^tQ_1 + 5e^{5t}Q_2 = Ae^{tA}$. This can be used to solve the system of differential equations

$$\frac{dx_1}{dt} = 2x_1 + x_2 + x_3 + x_4$$
$$\frac{dx_2}{dt} = x_1 + 2x_2 + x_3 + x_4$$
$$\frac{dx_3}{dt} = x_1 + x_2 + 2x_3 + x_4$$
$$\frac{dx_4}{dt} = x_1 + x_2 + x_3 + 2x_4$$

Indeed, writing this system in the form $\frac{dX}{dt} = AX$, it is an easy exercise to prove that

$$X = e^{tA} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

is the unique solution with $X(0) = [a, b, c, d]^t$.

The exponential matrix e^A can be defined for any real or complex square matrix A by

$$e^{A} = I + A + \frac{A^{2}}{2} + \dots + \frac{A^{n}}{n!} + \dots$$

One can show that the series converges for the usual norm on $\mathbb{R}^{n \times n}$.

We now give an application of the Spectral Theorem to real quadratic forms. If q is a quadratic form on a real inner-product space V of dimension n then $q(u) = \langle T(u), u \rangle$ for a unique self-adjoint operator T on V. Indeed, if e is an orthonormal basis of V and $X = [u]_e$, we have $q(u) = X^t A X$ for a unique symmetric matrix A. We define T to be the linear operator on V with matrix $[T]_e = A$. This definition of T is independent of the choice of orthonormal basis. Indeed, if f is another orthonormal basis and $Y = [u]_f$ then X = PY with P the orthogonal matrix whose columns are $[f_1]_e, [f_2]_e, \ldots, [f_n]_e$ then $q(u) = Y^t P^t A P Y = Y^t B Y$ with $B = P^t A P = P^{-1} A P = [T]_f$. By the Spectral Theorem, we can choose f so that $[T]_f$ is a diagonal matrix. In this case

$$q(u) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

where $Y = [y_1, y_2, ..., y_n]$ and $T(f_i) = \lambda_t f_i$. If m is the smallest eigenvalue and M the largest we have

$$m||u||^2 = q(u) \le M||u||^2$$

so that m, M are the minimum values of q on the unit sphere ||u|| = 1. These values are attained if and only if u is an eigenvector of T. For example, the minimum and maximum values of the quadratic form $q(X) = X^t A X$, where A is the matrix in Example 1, are 1 and 5 respectively. If $A \in \mathbb{R}^{m \times n}$ then $B = A^t A$ is a symmetric matrix. The quadratic form

$$q(X) = X^{t}BX = (AX)^{t}AX = ||AX||^{2}$$

is positive so that the eigenvalues λ_i of B are ≥ 0 . If A is a square matrix then the λ_i are just the squares of the eigenvalues of A. If M is the largest of the eigenvalues λ_i then $||AX|| \leq \sqrt{M}||X||$ with equality if and only if X is an eigenvector of A^tA . If we define the norm of A to be $||A|| = \sqrt{M}$ then

$$||A|| = 0 \implies A = 0, \quad ||cA|| = |c|||A||, \quad ||A_1 + A_2|| \le ||A_1|| + ||A_2||, \quad ||A_1A_2|| \le ||A_1||||A_2||.$$

Such a norm is called a **matrix norm**.

Let $f = (f_1, \ldots, f_n)$ be an orthonormal basis of eigenvectors of B. Suppose that

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0$$

are the non-zero eigenvalues of B. For $1 \leq i \leq r$, let $\sigma_i = \sqrt{\lambda_i}$ and let $g_i = \frac{1}{\sigma_i} A f_i$. then $A f_i = \sigma_i g_i$ and

$$\langle g_i, g_j \rangle = \frac{1}{\lambda_i} \langle Af_i, Af_j \rangle = \frac{1}{\lambda_i} \langle A^t Af_i, f_j \rangle = \langle f_i, f_j \rangle = \delta_{ij}$$

so that g_1, \ldots, g_r is an orthonormal set of vectors in \mathbb{R}^m . If we set $E_i = g_i f_i^t$ then E_i is of rank 1 and

$$A = \sigma_1 E_1 + \sigma_2 E_2 + \dots + \sigma_r E_r.$$

This is the singular value decomposition of A. The σ_i are the singular values of A. We have

$$||A - (\sigma_1 E_1 + \sigma_2 E_2 + \dots + \sigma_s E_s)|| \le \sigma_{s+1}$$

for $1 \leq s < r$. One can show that $\sigma_1 E_1 + \sigma_2 E_2 + \cdots + \sigma_s E_s$ is the best approximation to A by a matrix of rank s.

Problem 1. Prove that

$$\frac{1}{\sigma_1}E_1^t + \frac{1}{\sigma_2}E_2^t + \dots + \frac{1}{\sigma_r}E_r^t$$

is the generalized inverse of A.