
The Spectral Theorem

Let V be a finite-dimensional inner-product space. The mapping bR : V → V ∗ defined by
bR(v) = φv, where φv(u) =< u, v >, is bijective. It is linear if V is real and conjugate linear if V is
complex. If T : U → V is a linear mapping of finite-dimensional inner-product spaces, then there is
a unique mapping T ∗ : V → U such that

T t(πv) = φT∗(v).

Since T t(φv) = φv ◦ T , this is equivalent to

< T (u), v >=< u, T ∗(v) >

for all u ∈ U, v ∈ V . The mapping T ∗ is called the adjoint of T . Since

< u, T ∗(c1vv + c2v2) > =< T (u), c1vv + c2v2) >

= c1 < T (u), v1) + c12 < T (u), v2)
= c1 < u, T ∗(v1)) + c12 < u, T ∗(v2))
=< u, c1T

∗(v1) + c2T
∗(v2),

we see that T ∗ is a linear mapping. We also have

(aS + bT )∗ = aS∗ + bT ∗, T ∗∗ = T.

The proof of this is left as an exercise.
If e, f are orthonormal bases of U, V respectively, we have

< T (u), v >= [T (u)]tf [v]f = XtAtY = XtA∗Y

where X = [u]e, Y = [v]f , A = [T ], A = [T ]fe , A∗ = A
t
. Since < u, T ∗(v) >= XtBY , where

B = [T ∗]ef we see that B = A∗. Thus, for orthonormal bases e, f , we have

[T ∗]ef = ([T ]fe )∗.

The matrix A∗ is called the adjoint of A. If T is a linear operator on V then T is said to be
self-adjoint if T = T ∗ and normal if T ∗T = TT ∗.

For example, if A ∈ Cn×n, then the linear operator TA on Cn×1 defined by TA(X) = AX is
self-adjoint if and only if A is Hermitian. If A ∈ Rn×n, then the linear operator TA on Rn×1 defined
by TA(X) = AX is self-adjoint if and only if A is symmetric.

If T : U → V is a linear mapping of inner product spaces then if a linear mapping S : V → U
satisfies

< T (u), v >=< u, S(v) >

for all u ∈ U, v ∈ V it is unique as is called the adjoint of T and denoted by T ∗. For example, in the
space `2, the adjoint of the left-shift operator L is the right-shift operator R since

< L(x), y >=
∞∑

n=0

xn+1yn =
∞∑

n=1

xnyn−1 =< x, R(y) > .
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A linear operator T on an inner-product space V is said to be self-adjoint if T = T ∗ which is
equivalent to

< T (u), v >=< u, T (v) >

for all u, v ∈ V .
A linear operator on an inner-product space V is said to be orthogonally diagonalizable if

there is a basis of V consisting of eigenvectors of T .

Theorem 1 (Spectral Theorem). Let T be a linear operator on a finite-dimensional inner product
space V . Then T is orthogonally diagonalizable if and only if T is normal.

Proof. ( =⇒ ) If e = (e1, . . . , en) is an orthonormal basis of eigenvectors of T then

[T ]e =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 , [T ∗]e =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




which shows that T, T ∗ commute.
( ⇐= ) We proceed by induction on n = dim(V ), the case n = 0 being trivial. Let λ be

an eigenvalue of T and let W = Ker(T − λ). Then W is T -invariant which implies that W is
T ∗-invariant since T and T ∗ commute. If w ∈ W , v ∈ W⊥ then

< T (v), w >=< v, T ∗(w) >= 0

which implies that W⊥ is T -invariant. If S is the restriction T to W⊥ then S∗ is the restriction
of T∗ to S⊥ so that S is a normal operator on the inner-product space W⊥. Since dim(W⊥) < n,
our inductive hypothesis implies that W⊥ has an orthogonal basis B1 consisting of eigenvectors of
S. Since eigenvectors of S are also eigenvectors of T and V = W ⊕W⊥ we obtain an orthogonal
basis B of V consisting of eigenvectors of T eigenvectors of T by taking B = B1 ∪ B2, where B2 is
an orthogonal basis of W .

Corollary 2. If T is a normal operator then eigenvectors of T corresponding to distinct eigenvalues
are orthogonal.

This is true even if V is infinite-dimensional. Indeed, if T is normal we have

||T (u)||2 =< T (u), T (u) >=< u, T ∗T (u) >=< u, TT ∗(u) >=< T ∗(u), T ∗(u) >= ||T ∗(u)||2

Thus ||(T − λ)(u)|| = ||(T ∗ − λ)(u)|| so that T (u) = λu ⇐⇒ T ∗(u) = λu. Hence if T (u) = λu and
T (v) = µv we have

λ < u, v >=< λu, v >=< T (u), v >=< u, T ∗(v) >=< u, µv = µ < u, v >

which implies (λ− µ) < u, v >= 0 and hence < u, v >= 0.

Corollary 3. If A ∈ Cn×n is a normal matrix (AA∗ = A∗A) then there is an invertible matrix
P ∈ Cn×n whose columns are orthonormal for the standard inner product on Cn×n such that P−1AP
is a diagonal matrix.
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The columns of P ∈ Cn×n are orthonormal if and only if PT P = I which is equivalent to
P−1 = P ∗. Such a complex matrix is called unitary. Two complex matrices A,B are said to
be unitarily equivalent if there exists a unitary matrix P such that B = P−1AP or, equivalently,
B = P ∗AP .

Corollary 4. If T is self-adjoint then the eigenvalues of T are real.

This is true even if V is infinite-dimensional. Indeed, if T (u) = λu and u 6= 0 then

λ < u, u >=< λu, u >=< T (u), u >=< u, T (u) >=< u, λu >= λ < u, u >

which implies λ = λ on cancelling < u, u >= ||u||2 which is 6= 0.

Corollary 5. If T is a linear operator on a finite dimensional real inner product space then T is
orthogonally diagonalizable if and only if T is self-adjoint.

Corollary 6. If A is a real symmetric n × n matrix there exists an invertible real matrix P with
orthonormal columns with respect to the standard inner product on Rn×n such that P−1AP is a
diagonal matrix.

The columns of P ∈ Rn×n are orthonormal if and only if PT P = I which is equivalent to
P−1 = P t. Such a real matrix is called orthogonal. Two real matrices A,B are said to be
orthogonally equivalent if there exists an orthogonal matrix P such that B = P−1AP or, equivalently,
B = P tAP .

If T is a diagonalizable operator on a finite-dimensional vector space V and µ1, . . . , µs are the
distinct eigenvalues of T then

V = Ker(T− µ1)⊕Ker(T− µ2)⊕ · · · ⊕Ker(T− µs).

Hence any v ∈ V can be uniquely written in the form v = v1+v2+· · ·+vs with vi ∈ Vi = Ker(T−µi).
The operators Qi on V defined by Qi(v) = vi are linear and satisfy

1 = Q1 + Q2 + · · ·+ Qn, QiQj = δij .

Since TQi = µiQi, we have
T = µ1Qi + µ2Q2 + · · ·+ µsQs.

This is the spectral decomposition of T . If V is an inner product space and V is self-adjoint then
the operator Qi is orthogonal projection onto Vi. This operator is self-adjoint.

If p(X) is any polynomial in X then

p(T ) = p(µ1)Q1 + p(µ2)Q2 + · · ·+ p(µs)Qs.

If cm
i = µi for 1 ≤ i ≤ s and

S = c1Q1 + c2Q2 + · · ·+ csQs

then Sm = T .
If A is a real or complex n × n matrix which is orthogonally diagonalizable and u1, . . . , µn is

an orthogonal basis of eigenvectors with Aui = λiui then Pi = uiu
∗
i is the matrix of orthogonal

projection onto Span(ui) so that

I = P1 + P2 + · · ·+ Pn, PiPj = δijI, APi = APi.
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Hence A = λ1P1 + λ2P2 + · · ·+ λnPn is a spectral decomposition of A into a linear combination of
rank 1 self-adjoint matrices Pi. To get the spectral decomposition of A let µ1, . . . , µs be the distinct
eigenvalues of A and let

Qi =
∑

λj=µi

Pj .

Then A = µ1Q1 + µ2Q2 + · · ·+ µsQs is the spectral decomposition of A.

Example 1. If A is the real symmetric matrix




2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


, we have (A − 1)2 = 4(A − 1)

and so (A − 1)(A − 5) = 0. The eigenspace for the eigenvalue 1 has as orthonormal basis f1 =
(1/
√

2)(1,−1, 0, 0)t, f2 = (1/
√

6)(1, 1,−2, 0)t, f3 = (1/2
√

3)(1, 1, 1,−3)t. The eigenspace for the
eigenvalue 5 is one-dimensional with basis the unit vector f4 = (1/2)(1, 1, 1, 1)t. The matrix

P = [1R4 ]ef =




1/
√

2 1/
√

6
√

3/2 1/2
−1/

√
2 1/

√
6 1/2

√
3 1/2

0 −2/
√

6 1/2
√

3 1/2
0 0 −3/2

√
3 1/2




is an orthogonal matrix with

P−1AP =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 5


 .

If Pi = fif
t
i , we have

P1 =
1
2




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


 , P2 =

1
6




1 1 −2 0
1 1 −2 0
−2 −2 4 0
0 0 0 0


 ,

P3 =
1
12




1 1 1 −3
1 1 1 −3
1 1 1 −3
−3 −3 −3 9


 , P4 =

1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

We have A = P1 + P2 + P3 + 5P4 = Q1 + 5Q2, where

Q1 = P1 + P2 + P3 =
1
4




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 , Q2 = P4 =

1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

We thus have An = Q1 + 5nQ2 for all n ∈ Z and, if B =
√

A = Q1 +
√

5Q2, we have B2 = A.
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As another application of this consider etA = etQ1 + e5tQ2 with t ∈ R. Then etA is a matrix
C = [cij(t)] whose entries are differentiable real valued functions cij(t) of t. If we define the derivative
of C = C(t) to be dC

dt = C ′(t) = [c′ij(t)], we have d
dte

tA = etQ1 + 5e5tQ2 = AetA. This can be used
to solve the system of differential equations

dx1

dt
= 2x1 + x2 + x3 + x4

dx2

dt
= x1 + 2x2 + x3 + x4

dx3

dt
= x1 + x2 + 2x3 + x4

dx4

dt
= x1 + x2 + x3 + 2x4

Indeed, writing this system in the form dX
dt = AX, it is an easy exercise to prove that

X = etA




a
b
c
d




is the unique solution with X(0) = [a, b, c, d]t.
The exponential matrix eA can be defined for any real or complex square matrix A by

eA = I + A +
A2

2
+ · · ·+ An

n!
+ · · · .

One can show that the series converges for the usual norm on Rn×n.

We now give an application of the Spectral Theorem to real quadratic forms. If q is a quadratic
form on a real inner-product space V of dimension n then q(u) =< T (u), u > for a unique self-adjoint
operator T on V . Indeed, if e is an orthonormal basis of V and X = [u]e, we have q(u) = XtAX for
a unique symmetric matrix A. We define T to be the linear operator on V with matrix [T ]e = A.
This definition of T is independent of the choice of orthonormal basis. Indeed, if f is another
orthonormal basis and Y = [u]f then X = PY with P the orthogonal matrix whose columns are
[f1]e, [f2]e, . . . , [fn]e then q(u) = Y tP tAPY = Y tBY with B = P tAP = P−1AP = [T ]f . By the
Spectral Theorem, we can choose f so that [T ]f is a diagonal matrix. In this case

q(u) = λ1y
2
1 + λ2y

2
2 + · · ·+ λny2

n

where Y = [y1, y2, . . . , yn] and T (fi) = λtfi. If m is the smallest eigenvalue and M the largest we
have

m||u||2 = q(u) ≤ M ||u||2

so that m,M are the minimum values of q on the unit sphere ||u|| = 1. These values are attained
if and only if u is an eigenvector of T . For example, the minimum and maximum values of the
quadratic form q(X) = XtAX, where A is the matrix in Example 1, are 1 and 5 respectively.

5



If A ∈ Rm×n then B = AtA is a symmetric matrix. The quadratic form

q(X) = XtBX = (AX)tAX = ||AX||2

is positive so that the eigenvalues λi of B are ≥ 0. If A is a square matrix then the λi are just the
squares of the eigenvalues of A. If M is the largest of the eigenvalues λi then ||AX|| ≤ √

M ||X||
with equality if and only if X is an eigenvector of AtA. If we define the norm of A to be ||A|| = √

M
then

||A|| = 0 =⇒ A = 0, ||cA|| = |c|||A||, ||A1 + A2|| ≤ ||A1||+ ||A2||, ||A1A2|| ≤ ||A1||||A2||.

Such a norm is called a matrix norm.
Let f = (f1, . . . , fn) be an orthonormal basis of eigenvectors of B. Suppose that

λ1 ≥ λ2 ≥ · · · ≥ λr > 0

are the non-zero eigenvalues of B. For 1 ≤ i ≤ r, let σi =
√

λi and let gi = 1
σi

Afi. then Afi = σigi

and
< gi, gj >=

1
λi

< Afi, Afj >=
1
λi

< AtAfi, fj >=< fi, fj >= δij

so that g1, . . . , gr is an orthonormal set of vectors in Rm. If we set Ei = gif
t
i then Ei is of rank 1

and
A = σ1E1 + σ2E2 + · · ·+ σrEr.

This is the singular value decomposition of A. The σi are the singular values of A. We have

||A− (σ1E1 + σ2E2 + · · ·+ σsEs)|| ≤ σs+1

for 1 ≤ s < r. One can show that σ1E1 + σ2E2 + · · · + σsEs is the best approximation to A by a
matrix of rank s.

Problem 1. Prove that
1
σ1

Et
1 +

1
σ2

Et
2 + · · ·+ 1

σr
Et

r

is the generalized inverse of A.

6


