The Spectral Theorem

Let V be a finite-dimensional inner-product space. The mapping by : V — V* defined by
br(v) = ¢y, where ¢, (u) =< u,v >, is bijective. It is linear if V' is real and conjugate linear if V' is
complex. If T : U — V is a linear mapping of finite-dimensional inner-product spaces, then there is
a unique mapping 7% : V' — U such that

T () = G1u(v)-
Since T*(¢,) = ¢, o T, this is equivalent to
<T(u),v >=<u,T*(v) >
for all w € U,v € V. The mapping T* is called the adjoint of T'. Since

< u, T*(c1v, + cav2) > =< T'(u), 1V, + cova) >
=71 <T(u),vn)+¢2<T(u),ve)
=¢ <u,T"(v1)) + €12 < u, T*(v2))
=< u,c1T*(v1) + c2T"(v2),

we see that T™ is a linear mapping. We also have
(aS +bT)* =aS* +bT*, T* =T.

The proof of this is left as an exercise.
If e, f are orthonormal bases of U, V respectively, we have

< T(u),v >=[T(u)]jv], = X'A'Y = X'A*Y

where X = [ul.,Y = [v];,A = [T],A = [T)],A* = A". Since < u,T*(v) >= X'BY, where
B = [T*]? we see that B = A*. Thus, for orthonormal bases e, f, we have

)% = (IT))".
The matrix A* is called the adjoint of A. If T is a linear operator on V then T is said to be
self-adjoint if T'=T* and normal if T*T = TT*.

For example, if A € C"*"  then the linear operator T4 on C"*! defined by Tx(X) = AX is
self-adjoint if and only if A is Hermitian. If A € R™*", then the linear operator T4 on R™*! defined
by Ta(X) = AX is self-adjoint if and only if A is symmetric.

If T:U — V is a linear mapping of inner product spaces then if a linear mapping S : V — U
satisfies

< T(u),v >=<wu,S(v) >

for all u € U,v € V it is unique as is called the adjoint of 7" and denoted by T*. For example, in the
space 2, the adjoint of the left-shift operator L is the right-shift operator R since

00 LS
< L(JZ), Yy >= Z Tnt1Yy = Z TpYp—1 =< T, R(y) >
n=0

n=1



A linear operator T on an inner-product space V is said to be self-adjoint if T = T™ which is
equivalent to
< T(u),v >=<u,T(v) >

for all u,v € V.
A linear operator on an inner-product space V is said to be orthogonally diagonalizable if
there is a basis of V' consisting of eigenvectors of T'.

Theorem 1 (Spectral Theorem). Let T be a linear operator on a finite-dimensional inner product
space V.. Then T is orthogonally diagonalizable if and only if T is normal.

Proof. (=) If e=(ey,...,e,) is an orthonormal basis of eigenvectors of 7" then
/\1 0 0 )\1 0 0
0 A 0 . 0 X 0
[T]e = < [T7]e
0 0 An 0 0 An

which shows that T, 7" commute.

( <= ) We proceed by induction on n = dim(V), the case n = 0 being trivial. Let A be
an eigenvalue of T and let W = Ker(T — A). Then W is T-invariant which implies that W is
T*-invariant since T' and T* commute. If w € W, v € W+ then

<TW),w >=<v,T*(w) >=0

which implies that W+ is T-invariant. If S is the restriction 7" to W+ then S is the restriction
of T* to S+ so that S is a normal operator on the inner-product space W+. Since dim(W+) < n,
our inductive hypothesis implies that W+ has an orthogonal basis B; consisting of eigenvectors of
S. Since eigenvectors of S are also eigenvectors of T and V = W @ W+ we obtain an orthogonal
basis B of V' consisting of eigenvectors of T' eigenvectors of T' by taking B = By U Bs, where By is
an orthogonal basis of W. O

Corollary 2. If T is a normal operator then eigenvectors of T corresponding to distinct eigenvalues
are orthogonal.

This is true even if V is infinite-dimensional. Indeed, if T" is normal we have
T (u)|]? =< T(u), T(u) >=< u, T*T(u) >=< u, TT*(u) >=< T*(u), T*(u) >= ||T*(u)]|?

Thus |[(T — A)(u)|| = |[(T* — A)(u)|| so that T'(u) = Mu <= T*(u) = . Hence if T'(u) = Au and
T(v) = pv we have

A< u,v>=< A, v >=<T(u),v >=< u, T*(v) >=< u, iv = p < u,v >
which implies (A — ) < w,v >= 0 and hence < u,v >= 0.

Corollary 3. If A € C™ " s a normal matriz (AA* = A*A) then there is an invertible matriz
P ¢ C™*™ whose columns are orthonormal for the standard inner product on C**™ such that P~ AP
is a diagonal matrix.



The columns of P € C"*" are orthonormal if and only if PTP = I which is equivalent to
P~! = P*. Such a complex matrix is called unitary. Two complex matrices A, B are said to
be unitarily equivalent if there exists a unitary matrix P such that B = P~!'AP or, equivalently,
B = P*AP.

Corollary 4. If T is self-adjoint then the eigenvalues of T are real.

This is true even if V' is infinite-dimensional. Indeed, if T'(v) = Au and u # 0 then
A< uyu>=< Mu,u >=< T(u),u >=<u,T(u) >=< u, \u >= \ < u,u >
which implies A = A on cancelling < u,u >= ||u||> which is # 0.

Corollary 5. If T is a linear operator on a finite dimensional real inner product space then T is
orthogonally diagonalizable if and only if T is self-adjoint.

Corollary 6. If A is a real symmetric n X n matriz there exists an invertible real matriz P with
orthonormal columns with respect to the standard inner product on R™*™ such that P~1AP is a
diagonal matrix.

The columns of P € R™ " are orthonormal if and only if PTP = I which is equivalent to
P~! = P!, Such a real matrix is called orthogonal. Two real matrices A, B are said to be
orthogonally equivalent if there exists an orthogonal matrix P such that B = P~ AP or, equivalently,
B = P'AP.

If T is a diagonalizable operator on a finite-dimensional vector space V' and i, ..., us are the
distinct eigenvalues of T' then

V =Ker(T — 1) @ Ker(T — p2) @ - - - & Ker(T — ps).

Hence any v € V can be uniquely written in the form v = vy +vo+- - - +vs with v; € V; = Ker(T — ;).
The operators @); on V defined by Q;(v) = v; are linear and satisfy

l=Q1+ Q2+ +Qn, QiQ; =10

Since T'Q; = 1;Q;, we have
T =mQi+ p2Q2+ -+ psQs.
This is the spectral decomposition of 7. If V is an inner product space and V is self-adjoint then

the operator Q; is orthogonal projection onto V;. This operator is self-adjoint.
If p(X) is any polynomial in X then

p(T) = p(p1)Q1 + p(p2)Q2 + - -+ + p(us)Qs-
If ¢ = p; for 1 <i<sand
S=c1Q1+ c2Q2 + -+ + ¢ Qs

then S™ =T.

If A is a real or complex n X n matrix which is orthogonally diagonalizable and w1, ..., i, is
an orthogonal basis of eigenvectors with Au; = Aju; then P; = u;u} is the matrix of orthogonal
projection onto Span(u;) so that

I=P +Py+---+P,, PP =06;I, AP,= AP,



Hence A =M\ Py + XoP> + -+ A\, P, is a spectral decomposition of A into a linear combination of
rank 1 self-adjoint matrices P;. To get the spectral decomposition of A let u1, ..., us be the distinct
eigenvalues of A and let
Qi= > P
A

J=Hi

Then A = u1Q1 + poQo + - - - + psQs is the spectral decomposition of A.

Example 1. If A is the real symmetric matric , we have (A —1)? = 4(A - 1)

2 1 11
1 2 1 1
11 2 1
1 1 1 2
and so (A —1)(A —5) = 0. The eigenspace for the eigenvalue 1 has as orthonormal basis fi =
(1/v/2)(1,-1,0,0)t, fo = (1/v6)(1,1,-2,0), f3 = (1/2v/3)(1,1,1,-3)t. The eigenspace for the
eigenvalue 5 is one-dimensional with basis the unit vector fy = (1/2)(1,1,1,1)*. The matriz

1/vV2 16 V32 1)2
-1/vV2 16 1/2v3 0 1)2
0 -2/v6  1/2v/3 1/2
0 0 —-3/2v3 1/2

P == [1R4](} -

18 an orthogonal matrix with

1 0 0 O
1 101 0 0
PAP = 0 010
0 0 0 5
If P, = fif}, we have
1 -1 0 0 1 1 -2 0
1 -1 1 0 0 1|1 1 -2 0
Pi=3510 o0 o0 o|" 2752 —2 4 of’
0 0 0 0 0 0 0 O
1 1 1 -3 1 1 1 1
1 1 1 1 -3 11 1 1 1
=11 1 1 =30 P=1hh 111
-3 -3 -3 9 1 1 11
We have A= P, + P, + P3 + 5Py = Q1 + 5Q2, where
3 -1 -1 -1 1 1 1 1
11-1 3 -1 -1 111 1 1 1
-1 -1 -1 3 1 1 11

We thus have A" = Q1 + 5"Qq for all n € Z and, if B = VA = Q1 + v/5Q2, we have B> = A.



As another application of this consider e!4 = etQ; + €°*Qy with t € R. Then e/ is a matrix
C' = [¢;5(t)] whose entries are differentiable real valued functions ¢;;(t) of t. If we define the derivative
of C = C(t) to be &< = C'(t) = [¢};(1)], we have &e'4 = 'Qy + 5e7'Qy = Ae'. This can be used
to solve the system of differential equations

iz S
— =2x1+x2t+ a3+
a 1 2+ 23+ 24
e J
— ==z o+ a3+
at 1 2T X3+ X4
d
% =21+ 2o+ 223+ 14
d
% =x1 + 2o+ x3+ 214
Indeed, writing this system in the form % = AX, it is an easy exercise to prove that
a
X =et b
c
d

is the unique solution with X (0) = [a, b, ¢, d]’.
The exponential matrix e?* can be defined for any real or complex square matrix A by
A? A"
A =T+ A+
2 n!

One can show that the series converges for the usual norm on R™*™.

We now give an application of the Spectral Theorem to real quadratic forms. If ¢ is a quadratic
form on a real inner-product space V' of dimension n then ¢(u) =< T'(u),u > for a unique self-adjoint
operator T' on V. Indeed, if e is an orthonormal basis of V and X = [u]., we have q(u) = X*AX for
a unique symmetric matrix A. We define T to be the linear operator on V' with matrix [T]. = A.
This definition of T is independent of the choice of orthonormal basis. Indeed, if f is another
orthonormal basis and Y = [u]y then X = PY with P the orthogonal matrix whose columns are
[file, [f2les - -, [fnle then q(u) = YIPPAPY = Y'BY with B = P'AP = P~'AP = [T];. By the
Spectral Theorem, we can choose f so that [Ty is a diagonal matrix. In this case

q(u) = My? + Aoy + -+ Ay2

where Y = [y1,y2,...,Yn] and T(f;) = M\ fi. If m is the smallest eigenvalue and M the largest we
have

mlful|* = q(u) < MlJul”

so that m, M are the minimum values of ¢ on the unit sphere ||u|| = 1. These values are attained
if and only if u is an eigenvector of T'. For example, the minimum and maximum values of the
quadratic form ¢(X) = X*AX, where A is the matrix in Example 1, are 1 and 5 respectively.



If A€ R™*™ then B = A'A is a symmetric matrix. The quadratic form
q(X) = X'BX = (AX)'AX = ||AX]||?

is positive so that the eigenvalues A; of B are > 0. If A is a square matrix then the \; are just the
squares of the eigenvalues of A. If M is the largest of the eigenvalues \; then ||AX|| < VM| X||
with equality if and only if X is an eigenvector of A*A. If we define the norm of A to be ||A|| = vV M
then

Al =0 = A=0, |lcA||=|c[||All, [[A1+ Azl < [[Ai][ +[|A2[l, [[A1Aa]] < [[A1]][[A2]]-

Such a norm is called a matrix norm.
Let f = (f1,..., fn) be an orthonormal basis of eigenvectors of B. Suppose that

AMZ>A2>-- 2N >0

are the non-zero eigenvalues of B. For 1 <i < r, let o; = v/\; and let g; = UiAfZ then Af; = 0;9;
and '

1 1
<9i,9; >= = < Afi Afy >= - < ANAS [ >=< i f; >= 0y
1 2
so that g1,...,g, is an orthonormal set of vectors in R™. If we set F; = g; f! then E; is of rank 1

and
A= O'1E1 +02E2 + . +O'TET.

This is the singular value decomposition of A. The o; are the singular values of A. We have
[|[A— (o1 By +02F2 + -+ + 0. Ey)|| <0511

for 1 < s < r. One can show that o1 F1 4+ 02Fs + - -+ + 04F; is the best approximation to A by a
matrix of rank s.

Problem 1. Prove that 1 1 1
—E{+ —E}+---+ —E!
01 g9 Or

18 the generalized inverse of A.



