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Solutions to Assignment 8

1. Since P 2−P = 0 we have V = Ker(P2−P) = Ker(P(P−1)) = Ker(P)⊕Ker(P−1) = Ker(P)⊕Ker(Q).
Now v ∈ Ker(Q) =⇒ v = P(v) =⇒ v ∈ Im(P) and v ∈ Im(P) =⇒ v = P(u) =⇒ Q(v) =
(1 − P)P(u) = 0 =⇒ v ∈ Ker(Q). Hence Ker(Q) = Im(P). Similarly, since Q2 = (1 − P )2 =
1 − 2P + P 2 = 1 − P = Q, we have Ker(P) = Im(Q). If V is an inner product space, we have P =
PW ⇐⇒ Im(P) ⊥ Ker(P). If P is self-adjoint then P (u) = 0 =⇒ < u, P (v) >=< P (u), v >= 0 which
implies P = PW . Conversely, if P = PW then < P (u), v >=< P (u), P (v) + Q(v) >=< P (u), P (v) >=
< P (u) + Q(u), P (v) >=< u,P (v) > which implies that P is self-adjoint.

2. (a) If A = [aij ], B = [bij ] we have < A, B >= tr(ABt) =
∑

i,j aijbij = tr(BAt) =< B, A >. Hence
< A, A >=

∑
ij a2

ij ≥ 0 with equality iff aij = 0 for all i, j. We also have < aX + bY, Z >=
tr((aX + bY)Zt) = tr(aXZt + bYZt) = a < X,Z > +b < X, Z > so that <,> is an inner product.

(b) If A =
[
1 1
1 1

]
we have < X, T (Y ) >= tr(X(AY)t) − tr(X(YA)t) = tr(XYtA) − tr(XAYt) =

tr(AXYt) − tr(XAYt) =< T(X), Y >. Since T 3 = 4T we have T (T − 2)(T + 2) = 0 so that

the possible eigenvalues are 0, 2,−2. We have Ker(T) = Span(
[
1 0
0 1

]
,

[
1 1
1 1

]
), Ker(T − 2) =

Span(
[
1 −1
1 −1

]
), Ker(T + 2) = Span(

[
1 1
−1 −1

]
). Applying Gram-Schmidt to each eigenspace

and normalizing we get the following orthonormal basis of V

1√
2

[
1 0
0 1

]
,

1√
2

[
0 1
1 0

]
,

1
2

[
1 1
−1 −1

]
,

1
2

[
1 −1
1 −1

]

consisting of eigenvectors of T .

3. (a) We have (A − I)2 = 3(A − I) so that (A − I)(A − 4I) = 0. Since A 6= I, 4I, the polynomial
(X − 1)(X − 4) is the minimal polynomial of A and 1, 4 are the eigenvalues of A. We have

Null(A− I) = Span(




1
1
1


 , Null(A− 4I) = Span(




1
−1
0


 ,




1
0
−1


).

Applying Gram-Schmidt to the second eigenspace and normalizing, we get

f1 =
1√
6




1
1
1


 f2 =

1√
2




1
−1
0


 , f3 =

1√
2




1
1
−2


 .

The matrix P with columns f1, f2, f3 is an orthogonal matrix with

P tAP = P−1AP =




4 0 0
0 1 0
0 0 1


 .

(b) If X = PY we have ||X||2 =< PY, PY >=< Y,P tPY >=< Y, Y >= ||Y ||2 so that ||X|| = ||Y ||.
Since q(X) = XtAX = Y tP tAPY = 4y2

1 + y2
2 + y2

3 we have

||X||2 = ||Y ||2 = y2
1 + y2

2 + y2
3 ≤ q(X) ≤ 4y2

1 + 4y2
2 + 4y2

2 = 4||Y ||2 = 4||X||2.

Hence 1 ≤ q(X) ≤ 4 on the unit sphere ||X|| = 1.



(c) To obtain the spectral decomposition of A we have A = 4f1f
t
1 + f2f

t
2 + f3f

t
3. Hence

A = 4




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


 +




1/2 −1/2 0
−1/2 1/2 0

0 0 0


 +




1/6 1/6 −1/3
1/6 1/6 −1/3
−1/3 −1/3 2/3


 .

Adding the last two matrices yields the spectral decomposition

A = 4




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


 +




2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3


 .

(d) The following eight matrices B are symmetric and B2 = A:

B = ±2




1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


±




1/2 −1/2 0
−1/2 1/2 0

0 0 0


±




1/6 1/6 −1/3
1/6 1/6 −1/3
−1/3 −1/3 2/3




= ±



4/3 1/3 1/3
1/3 4/3 1/3
1/3 1/3 4/3


 ,±




1/3 4/3 1/3
4/3 1/3 /3
1/3 1/3 4/3


 ,±




0 1 1
1 0 1
1 1 0


 ,±




1 0 1
0 1 1
1 1 0


 .

To see that these are the only possible such symmetric matrices B we use the fact that B commutes
with A. This implies that A and B are simultaneously diagonalizable. Thus, there is an invertible
matrix Q with

Q−1AQ =




4 0 0
0 1 0
0 0 1


 , Q−1BQ =




a 0 0
0 b 0
0 0 c


 .

Since B2 = A, we have a2 = 4, b2 = c2 = 1 which gives a = ±2, b = c = ±1. This yields precisely
8 matrices B.

4. (a) We have AtA =
[
3 1
1 3

]
. The matrix P =

[
1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
is an orthogonal matrix whose

columns f1, f2 are eigenvectors of A with eigenvalues 2, 4 respectively. We have

Af1 =




1 1
1 −1
1 1




[
1/
√

2
−1/

√
2

]
=




0√
2

0


 =

√
2




0
1
0


 =

√
2g1

Af2 =




1 1
1 −1
1 1




[
1/
√

2
1/
√

2

]
=



√

2
0√
2


 = 2




1/
√

2
0

1/
√

2


 = 2g2.

The vectors g1, g2 defined above are orthonormal vectors and
√

2, 2 are the singular values of A.
The singular value decomposition of A is

A =
√

2g1f
t
1 + 2g2f

t
2

=
√

2




0
1
0


 [

1/
√

2 −1/
√

2
]
+ 2




1/
√

2
0

1/
√

2


 [

1/
√

2 1/
√

2
]

=
√

2




0 0
1/
√

2 −1
√

2
0 0


 + 2




1/2 1/2
0 0

1/2 1/2


 .

(b) The generalized inverse of A is

A+ =
1√
2
f1g

t
1 +

1
2
f2g

t
2 =

1√
2

[
0 1/

√
2 0

0 −1/
√

2 0

]
+

1
2

[
1/2 0 1/2
1/2 0 1/2

]
=

[
1/4 1/2 1/4
1/4 −1/2 1/4

]
.



5. (a) We have AA∗ =
[
i 1
1 i

] [−i 1
1 −ii

]
=

[
2 0
0 2

]
=

[−i 1
1 −ii

] [
i 1
1 i

]
= A∗A so A is normal.

(b) Since A has constant row sums = 1 + i the the vectors
[
1
1

]
is an eigenvector of A with eigenvalue

1 + i. Since the trace of A is the sum of the eigenvalues, the other eigenvalue is i − 1 with

eigenvector
[−1

1

]
. The matrix U =

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
, whose columns f1, f2 are the normalized

eigenvectors of A, is a unitary matrix with U−1AU =
[
1 + i 0

0 i− 1

]
.

(c) The spectral decomposition of A is

A = (1 + i)f1f
∗
1 + (i− 1)f2f

∗
2 = (1 + i)

[
1/2 1/2
1/2 1/2

]
+ (i− 1)

[
1/2 −1/2
−1/2 1/2

]
.


