McGill University MATH 251: Algebra 2 Assignment 6 Solutions

1. (a) Since $A^2 = nA$, we have A(A - nI) = 0 so that the possible eigenvalues of A are 0, n.

If the characteristic of F does not divide n, the minimal polynomial of A is X - 1 if n = 1 and X(X - n) is n > 1 since, in this case, $A, A - nI \neq 0$. Hence, A is diagonalizable. If n = 1 then P is already diagonal and we may take P = I. If n > 1 then

$$P^{-1}AP = \begin{bmatrix} n & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \quad \text{with} \quad P = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & -1 \end{bmatrix}$$

since Null(A – nI) = Span($e_1 + e_2 + \dots + e_n$) and Null(A) = Span($e_1 - e_2, e_1 - e_3, \dots, e_1 - e_n$). If the characteristic of F divides n then the minimal polynomial of A is X^2 . Since Null(A) = Span($e_1 - e_2, \dots, e_1 - e_n$) and $Ae_1 = e_1 + e_2 + \dots + e_n$ we see that there is one Jordan block of size 2 for the eigenvalue 0 with cyclic vector e_1 and n-2 Jordan blocks of size 1 for the eigenvalue 0 with cyclic vectors $e_1 - e_3, \dots, e_1 - e_n$. Hence

	[0]	1	0	• • •	0			[1	1	1	• • •	1]
	0	0	0	• • •	0			1	0	0	• • •	0
$P^{-1}AP =$	0	0	0	•••	0	with	P =	1	0	-1	• • •	0
	:	:	:	۰.	:			:	:	:	·.	:
	·	·	·	•	·			·	·	·	•	·
	0	0	0	•••	0			1	0	0	• • •	-1

- (b) If c_1, c_2, \ldots, c_m are the non-zero eigenvalues of T and $T(u_i) = c_i u_1$ with $u_i \neq 0$ then $u_1, u_2, \ldots, u_n \in \text{Im}(T)$ and are linearly independent since they are eigenvectors of T with distinct eigenvalues. Hence $m \leq n = \text{rank}(T)$. Since the only additional eigenvalue that T can have is the zero eigenvalue, we have $m \leq n + 1$.
- 2. (a) Since T is diagonalizable, its minimum polynomial $m_T(X)$ is a product of distinct linear factors. If R is the restriction of T to a T-invariant subspace W then $m_T(R) = 0$ since $m_T(T) = 0$. Hence $m_R(X)$ is a product of distinct linear factors since $m_R(X)$ divides $m_T(X)$. Thus R is diagonalizable.
 - (b) If T(u) = cu then S(T(u)) = cS(u) so that T(S(u)) = cS(u) since ST = TS. Thus $u \in Ker(T c) \implies S(u) \in Ker(T c)$ and hence Ker(T c) is S-invariant.
 - (c) Since the restriction of S to each eigenspace of T is diagonalizable, a basis for each eigenspace of T can be found consisting of eigenvectors of S. Since V is the direct sum of the eigenspaces of T, the union of these bases is a basis of V consisting of vectors which are simultaneously eigenvectors of S and T.
- 3. We have $N_1 = \text{Null}(A I) = \text{Span}(e_1, e_2, e_3), N_2 = \text{Null}((A I)^2) = \text{Span}(e_1, e_2, e_3, e_4, e_6), N_3 = \text{Null}((A I)^3) = \mathbb{F}^{6 \times 1}$ so that $\dim(N_1) = 3$, $\dim(N_2) = 5$, $\dim(N_3) = 6$ and we have

$$N_3/N_2 = \operatorname{Span}(\overline{e}_5), \quad N_2/N_1 = \operatorname{Span}(\overline{e}_4, \overline{e}_6).$$

Thus 1 is the only eigenvalue and there is exactly one Jordan block of size 3 with cyclic generator e_5 . Since The image of $(A-I)e_5 = e_1 + e_2 + e_4$ in N_2/N_1 is \overline{e}_4 we see that there is one Jordan block of size 2 with cyclic generator e_6 . Since $(A-I)^2e_5 = e_1 + e_2$ and $(A-I)e_6 = e_1 + e_2 + e_3$, we see that there is 1 Jordan block of size 1 with cyclic generator e_2 . If P is the 6×6 matrix whose columns are e_2 , $(A-I)e_6$, e_6 , $(A-I)^2e_5$, $(A-I)e_5$, e_5 we have

$$P = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \quad P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

4. (a) We have Null(B – I) = Span($e_1 - 2e_2 + e_3$), Null((B – I)²) = Span($e_2, e_1 + e_3$) = Null((B – I)³), Null(B – 2I) = Span($e_1 - 2e_2$) = Null((B – 2I)²) which implies that the Jordan canonical form of *B* has 1 Jordan block of size 1 for the eigenvalue 2 and 1 Jordan block of size 2 for the eigenvalue 2 with cyclic generators $e_2, e_1 - 2e_2$ respectively. Hence *A*, *B* are similar and $P^{-1}BP = A$ with

$$P = \begin{bmatrix} 1 & 1 & 0 \\ -2 & -2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- (b) The matrices A, B are not similar since rank(A I) = 1, rank(B I) = 2.
- (c) Let $W_i = \text{Span}(e_1, \dots, e_i)$ for $0 \le i \le n$. Then, for $2 \le i \le n$, we have $(A cI)e_i = a_{(i-1)i}e_{i-1} + f_i$ with $f_i \in W_{i-2}$. Since $(A cI)(W_i) \subseteq (W_{i-1})$, it follows that $(A cI)^{n-1}e_n = a_{12}a_{23}\cdots a_{(n-1)n}e_1 \ne 0$ and $(A cI)^n = 0$. Thus the Jordan canonical form of A has one Jordan block of size n for the eigenvalue c.