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1. Let S = {x ∈ RN | xn+2 = xn+1 + 6xn}. Then S = Ker(L2 − L − 6) = Ker((L − 3)(L + 2)) = Ker(L − 3) +
Ker(L+2) = span((1,−2, . . . , (−2)n, . . .))+span((1, 3, . . . , 3n, . . .)) = span(u, v) where u = (1,−2, . . . , (−2)n, . . .),
v = (1, 3, . . . , 3n, . . .) so that S = {au + bv | a, b ∈ R}. If x ∈ S then there are a, b ∈ R with xn = a(−2)n + b3n for
n ≥ 0. If x0 = x1 = 1, we have a + b = 1, −2a + 3b = 1 so that a = −1/5, b = 1/5. Hence xn = (3n − (−2)n)/5.

Remark. Since xn ∈ Z, it follows that 3n − (−2)n is divisible by 5 for all n. This also follows from the fact that
−2 is congruent to 3 mod 5.

2. We first note that f ′′ = f ′ + 6f implies f (n) = f (n−1) − f (n−2) for all n ≥ 2 so that f is infinitely differentiable.
Hence, if V is the vector space of infinitely differentiable real-valued functions on the the real line, S = {f ∈
RR|f ′′ = f ′ + 6f} = {f ∈ V |f ′′ = f ′ + 6f}. If D is the differentiation operator on V then S = Ker(D2−D− 6) =
Ker(D−3)(D+2) = Ker(D−3)+(D+2) = span(e3x)+span(e−2x) = span(e3x, e−2x) = {ae3x +be−2x | a, b ∈ R}.
If f ∈ S there are a, b ∈ R with f(x) = ae3x + be−2x for all x. If f(0) = f ′(0) = 1, we have a + b = 1, 3a− 2b = 1
so that a = 1/5, b = −1/5. Hence f(x) = (e3x − e−2x)/5.

3. We use the fact that the left shift operator on S = Ker(L2 − L − 6) corresponds to left multiplication on R2×1

by A =
[
0 1
6 1

]
using the isomorphism φ : S → R2×1 defined by φ(x) =

[
x0

x1

]
. Since L(u) = −2u and L(v) = 3v

where u = (1, 2, . . . , (−2)n, . . .), v = (1, 3, . . . , 3n, . . .), we have
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which implies that
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=
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]

so that

An =
1
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]
.

4. To find U ∩ V , we have to find those vectors y1(1, 1, 1, 0, 1) + y2(0, 1, 1, 1, 0) + y3(1, 1, 1, 1, 1) of V that lie in U .
This is equivalent to the finding of x1, x2, x3, x4 such that

x1(1, 1, 0, 1, 0) + x2(0, 1, 1, 0, 1) + x3(1, 0, 1, 0, 1) + x4(1, 1, 0, 1, 1) = y1(1, 1, 1, 0, 1) + y2(0, 1, 1, 1, 0) + y3(1, 1, 1, 1, 1).

This vector equation is equivalent to the system of equations

x1 + x3 + x4 = y1 + y3

x1 + x2 + x4 = y1 + y2 + y3

x2 + x3 = y1 + y2 + y3

x1 + x4 = y2 + y3

x2 + x3 + x4 = y1 + y3



Applying Gaussian elimination, we get the equivalent system

x1 + x3 + x4 = y1 + y3

x2 + x3 = y2

x3 = y1 + y2

x4 = y1 + y2 + y3

0 = y1 + y3

which has a solution if and only if y1 = y3. Hence

U ∩ V = {y1(1, 1, 1, 0, 1) + y2(0, 1, 1, 1, 0) + y1(1, 1, 1, 1, 1) | y1, y2 ∈ F2}
= {y1(0, 0, 0, 1, 0) + y2(0, 1, 1, 1, 0) | y1, y2 ∈ F2}
= span((0, 0, 0, 1, 0), (0, 1, 1, 1, 0))

To find a basis for

U + V = span((1, 1, 0, 1, 0), (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (0, 1, 1, 1, 0), (1, 1, 1, 1, 1))

we find the dependence relations for the given generating set. We have

x1(1, 1, 0, 1, 0)+x2(0, 1, 1, 0, 1)+x3(1, 0, 1, 0, 1)+x4(1, 1, 0, 1, 1)+x5(1, 1, 1, 0, 1)+x6(0, 1, 1, 1, 0)+x7(1, 1, 1, 1, 1) = 0

if and only if (x1, x2, x3, x4, x5, x6, x7) is a solution of the system

x1 + x3 + x4 + x5 + x7 = 0
x1 + x2 + x4 + x5 + x6 + x7 = 0

x2 + x3 + x5 + x6 + x7 = 0
x1 + x4 + x6 + x7 = 0

x2 + x3 + x4 + x5 + x7 = 0

which, by Gaussian elimination is equivalent to the system

x1 = x7

x2 = x7

x3 = x6 + x7

x4 = x6

x5 = x7.

Since there is a solution with x6 = 1, x7 = 0 and one with x6 = 0, x7 = 1, the first five vectors span U + V .
Moreover, these vectors are linearly independent since the only solution of the above system with x6 = x7 = 0 is
the zero solution.

5. The vectors u1 = (1, 1, 0, 1), u2 = (0, 1, 1, 1), u3 = (0, 0, 1, 0), u4 = (0, 0, 0, 1) form a basis for R4 since the equation
(x1, x2, x3, x4) = a1u1 + a2u2 + a3u3 + a4u4 has the unique solution

a1 = x1, a2 = x2 − x1, a3 = x1 − x2 + x3, a4 = x4 − x2.

If T is the linear mapping with T (u1) = T (u2) = 0, T (u3) = (1, 1, 0, 1), T (u4) = (0, 1, 1, 1), we have

T (x1, x2, x3, x4) = a3(1, 1, 0, 1) + a4(0, 1, 1, 1) = (x1 − x2 + x3, x1 − 2x2 + x3 + x4, x4 − x2, x1 − 2x2 + x3 + x4)

which has the required kernel and image.


