McGill University MATH 251: Algebra 2 Assignment 1 Solutions

1. If V' is a vector space and f is an isomorphism then f(u+v) = f(u) + f(v), f(cv) = cf(v). Setting u' = f(u), v' = f(v), we see that

$$u' + v' = f(f^{-1}(u') + f^{-1}(v')), \quad cv' = f(cf^{-1}(v'))$$

so that the operations of addition and multiplication by scalars on V' are completely determined by f and those of V. Conversely, if we define addition and multiplication on V' by the above formulae, we have f(u+v) = f(u) + f(v), f(cu) = cf(v). Verifying the vector spaces axioms for V' with these operations, we have on setting u' = f(u), v' = f(v), w' = g(w)

- V1: (u' + v') + w' = (f(u) + f(v)) + f(w) = f((u + v) + w) = f(u + (v + w)) = f(u) + (f(v) + f(w)) = u' + (v' + w')
- V2: u' + v' = f(u) + f(v) = f(u + v) = f(v + u) = f(v) + f(u) = v' + u'
- V3: Setting 0' = f(0), we have 0' + v' = f(0) + f(v) = f(0 + v) = f(v) = v'
- V4: Setting -v' = f(-v), we have -v' + v = f(-v) + f(v) = f(-v + v) = f(0) = 0'
- V5: 1v' = 1f(v) = f(1v) = f(v) = v'
- V6: a(bv') = a(bf(v)) = af(bv) = f(a(bv)) = f((ab)v) = (ab)f(v) = (ab)v'
- $\begin{array}{l} \text{V7:} \ (a+b)v' = (a+b)f(v) = f((a+b)v) = f(av+bv) = f(av) + f(bv) = af(v) + bf(v) = av' + bv', \\ a(u'+v') = a(f(u)+f(v)) = a(f(u+v)) = f(a(u+v)) = f(au+av) = f(au) + f(av) = af(u) + af(v) = au' + bv' \end{array}$

It follows that, with these operations, V' is a vector space over F and f is an isomorphism.

2. If
$$A = [a_{ij}] \in F^{p \times p}$$
, define $f(A) = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in \prod_{1 \le i,j \le 2} V_{ij}$, where $B = [b_{ij}] \in V_{11}, C = [c_{ij}] \in V_{12}, D = [d_{ij}] \in V_{21}, E = [e_{ij}] \in V_{22}$, by

 $b_{ij} = a_{ij}, \quad c_{ij} = a_{ij-n}, \quad d_{ij} = a_{i-nj}, \quad e_{ij} = a_{i-nj-n}.$

Conversely, if $X = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in \prod_{1 \le i, j \le 2} V_{ij}$, define A = g(X) by $a_{ij} = \begin{cases} b_{ij} & \text{if } 1 \le i, j \le n, \\ c_{ij} & \text{if } 1 \le i \le n, n+1 \le j \le n+m, \\ d_{ij} & \text{if } n+1 \le i \le n+m, 1 \le j \le n, \\ d_{ij} & \text{if } n+1 < i < n+m, n+1 < j < n+n \end{cases}$

Then f and g are inverse functions which proves that f is bijective. If $f(A') = \begin{bmatrix} B' & C' \\ D' & E' \end{bmatrix}$, we have

$$f(sA + tA') = \begin{bmatrix} sB + tB' & sC + tC' \\ sD + tD' & sE + tE' \end{bmatrix} = s \begin{bmatrix} B & C \\ D & E \end{bmatrix} + t \begin{bmatrix} B' & C' \\ D' & E' \end{bmatrix} = sf(A) + tf(B),$$

which shows that $f: F^{p \times p} \to \prod_{1 \le i,j \le 2} V_{ij}$ is an isomorphism of vector spaces.

3. Suppose that the vector space W is the union of the two proper subspaces U, V. Then $U \subsetneq V$; otherwise V = W. Similarly, $V \subsetneq U$. Let $v \in V, v \notin U$ and $U \in U, u \notin V$. Then w = u + v must be in U or V. If $w \in U$ then $v = w + (-u) \in U$ which is a contradiction. If $w \in V$ then $u = w + (-v) \in V$ which is also a contradiction. Hence, the original hypothesis $(W = U \cup V)$ is incorrect.

Note that the above argument yields the fact that the union of two proper subspaces, neither of which is contained in the other, is not a subspace.

If $V = \mathbb{F}_2$ and $U_1 = \{(0,0), (1,0)\}, U_2 = \{(0,0), (0,1)\}, U_3 = \{(0,0), (1,1)\}$ then U_1, U_2, U_3 are proper subspaces of V and $V = U_1 \cup U_2 \cup \cup U_3$.

- 4. (a) Since $x^2 + xy + y^2 = (x + y/2)^2 + 3y^2/4$, we have $x^2 + xy + y^2 = 0 \iff x = y = 0$. Therefore $S = \{(0,0)\}$ which is a subspace of \mathbb{R}^2 , the zero subspace.
 - (b) Since $x^2 + 2xy + y^2 = (x+y)^2$, we have $S = \{(x,y) \mid x+y=0\}$ which is a subspace of \mathbb{R}^2 .
 - (c) Since $x^2+2xy-8y^2 = (x+4y)(x-2y)$, we see that $u = (4, -1), v = (2, 1) \in S$ but $u+v = (6, 0) \notin S$. Therefore S is not a subspace of \mathbb{R}^2 .
 - (d) If x is the zero sequence then $x_n = 0$ for all n which implies that $x_n^2 = nx_n$ for all $n \ge 0$. Thus the zero vector is in S. If $x, y \in S$ and $a, b \in \mathbb{R}$ then $(ax + by)_n^2 = ax_n^2 + by_n^2 = anx_n + bny_n = n(xax + by)_n$ which shows that $ax + by \in S$. Thus S is a subspace of $\mathbb{R}^{\mathbb{N}}$.
 - (e) If f is the zero function then f(x) = 0 for all $x \in \mathbb{R}$ so that f(x+2) f(x+1) = xf(x) = 0 for all $x \in \mathbb{R}$. If $f, g \in S$ and $a, b \in \mathbb{R}$, we have

$$\begin{aligned} (af+bg)(x+2) - (af+bg)(x+1) &= af(x+2) + bg(x+2) - af(x+1) - bg(x+1) \\ &= a(f(x+2) - f(x+1)) + b(g(x+2) - g(x+1)) \\ &= a(xf(x)) + b(xg(x) = x(af+bg)(x) \end{aligned}$$

which shows that $af + bg \in S$. Hence S is a subspace of $\mathbb{R}^{\mathbb{R}}$.

5. If x is the zero sequence then $x_{n+k} = a_1 x_{n+k-1} + a_2 x_{n+k-2} + \cdots + a_k x_n = 0$ for all $n \ge 0$. This implies that S contains the zero vector. If $x, y \in S$ and $a, b \in F$ then

$$(ax + by)_{n+k} = ax_{n+k} + by_{n+k}$$

= $a(a_1x_{n+k-1} + a_2x_{n+k-2} + \dots + a_kx_n) + b(a_1y_{n+k-1} + a_2y_{n+k-2} + \dots + a_kx_n + a_ky_n)$
= $aa_1x_{n+k-1} + ba_1y_{n+k-1} + aa_2x_{n+k-2} + ba_2y_{n+k-2} + \dots + aa_kx_n + ba_ky_n$
= $a_1((ax + by)_{n+k-1} + a_2(ax + by)_{n+k-2} + \dots + a_k(ax + by)_n)$

which shows that $ax + by \in S$ and hence that S is a subspace of $F^{\mathbb{N}}$. Since

$$T(ax + by) = (ax_0 + by_0, ax_1 + by_1, \dots, ax_{k-1} + by_{k-1})$$

= $a(x_0, x_1, \dots, x_{k-1}) + b(y_0, y_1, \dots, y_{k-1}) = aT(x) + bT(y)$

we see that T is a linear mapping. Now define a mapping $R: F^k \to S$ by defining $R(x_0, x_1, \ldots, x_{k-1}) = (x_0, x_1, \ldots, x_n, \ldots)$ where x_n is defined inductively for $n \ge k$ by

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \ldots + a_k x_{n-k}.$$

Then R and T are inverse functions which shows that T is bijective and hence that T is an isomorphism.