
Least Squares and the Generalized Inverse

An important problem is to find a polynomial curve y = f(x) which ’best fits’ a given set of m
data points (x1, y1), (x2, y2), . . . , (xm, ym). If f(x) = a0 +a1x+ · · ·+an−1x

n−1 then the given points
lie on the curve y = f(x) if and only if yi = f(xi) for 1 ≤ i ≤ m which is is equivalent to the system
of equations

a0 + a1x1 + a2x
2
1 + · · ·+ an−1x

n−1
1 = y1

a0 + a1x2 + a2x
2
2 + · · ·+ an−1x

n−1
2 = y2

· · · · · · · · · · · · · · · · · · · · · · · ·
a0 + a1xm + a2x

2
m + · · ·+ an−1x

n−1
m = ym

having a solution (a0, a1, . . . , an−1). In general this system does not have a solution and we therefore
try to find (a0, a1, . . . , an−1) which minimizes

m∑

i=1

(yi − f(xi))2.

Such a vector is called a least squares solution of our system of equations. If m ≥ n and at
least n of the numbers x1, . . . , xm are distinct then we will show that there is only one least squares
solution. This gives a unique polynomial curve y = f(x) of degree n which best fits our data in the
sense of least squares.

More generally, if A is a real m× n matrix and Y ∈ Rn×1 then by a least squares solution of
the system of equations AX = Y we mean any X ∈ Rn×1 which minimizes ||AX − Y ||, the norm
being the usual norm in Rm×1. It follows that AX is the orthogonal projection B of Y on the
column space of A. Thus, the least squares solutions of AX = Y are those column vectors X with
AX = B. If rank(A) 6= n then the a squares solution is not unique. In the above example of finding
a polynomial curve of best fit the matrix

A =




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xm x2
m · · · xn−1

m




which is of rank n if m ≥ n and at least n of x1, . . . , xm are distinct.
If AX = B and Z is the orthogonal projection of X on the column space of At then Z is the

unique solution of AX = B which is in the column space of At. Indeed, X − Z ∈ Null(A) since the
orthogonal complement of the column space of At is the null space of A so that AZ = AX = B.
If Z1 is any vector in the column space of At with AZ1 = B then Z − Z1 is in the intersection of
the null space of A and the column space of At and so must be the zero vector. Since ||Z|| ≤ ||X||
with equality if and only if X = Z, we see that Z is also the unique vector X of smallest norm with
AX = B.

The function T : Rm×1 → Rn×1 defined by T (Y ) = Z is a linear mapping and so T = TA+ for a
unique n×m matrix A+. This matrix is called the generalized inverse of A. It is characterized
by the property that A+Y is the least squares solution of AX = Y of smallest norm.
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Example 1. Let’s find the least squares solution of AX = Y where

A =




1 1 2
1 −1 0
1 1 2


 and Y =




1
0
0


 .

The first step is to find the orthogonal projection of Y on the column space of A. The matrix
A has rank 2 and the first two columns A1, A2 are a basis for the column space of A. Since these
columns are not orthogonal, we apply the Gram-Schmidt process to to them to get the orthogonal
basis

A1 =




1
1
1


 , A2 − < A2, A1 >

< A1, A1 >
A1 =

2
3




1
−2
1


 .

Multiplying the second vector by 3/2, we get the orthogonal basis

C1 =



1
1
1


 , C2 =




1
−2
1




for the column space of A. The orthogonal projection of Y on the column space of A is then

B =
< Y,C1 >

< C1, C1 >
C1 +

< Y, C2 >

< C2, C2 >
C2 =

1
3
C1 +

1
6
C2 =

1
2




1
0
1


 .

The second step is to find a solution of AX = B. In this case

X =




0
0

1/4




is a least squares solution.
The third step is to find the orthogonal projection of this vector X on the column space of

At =




1 1 1
1 −1 1
2 0 2


 .

Here, the first two columns D1, D2 are already an orthogonal basis for the column space of At and
so the orthogonal projection of X on the column space of At is

Z =
< X, D1 >

< D1, D1 >
D1 +

< X,D2 >

< D2, D2 >
D2 =

1
12

D1 =
1
12




1
1
2


 .

Note that ||Z|| =
√

6
12 < 1

4 = ||X||.
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Problem 1. Prove that A+ = 1
12




1 6 1
1 −6 1
2 0 2


.

Example 2. Find the line of best fit for the data points (1, 1), (2, 0), (3, 4).

The required line y = a + bx has the property that X = [a, b]t is the least squares solution of the
system 


1 1
1 4
1 9




[
a
b

]
=




1
0
4




If A1, A2 are the columns of the coefficient matrix A then

A1 =




1
1
1


 , A2 − < A2, A1 >

< A1, A1 >
A1 =




1
4
9


− 14

3




1
1
1


 =

1
3



−11
−2
13




are an orthogonal basis for the column space of A. Multiplying the second of these vectors by 3, we
get the orthogonal basis

C1 =




1
1
1


 , C2 =



−11
−2
13


 .

The orthogonal projection of Y = [1, 0, 4]t on the column space of A is

B =
< Y, C1 >

< C1, C1 >
C1 +

< Y,C2 >

< C2, C2 >
C2 =

5
3




1
1
1


 +

41
294



−11
−2
13


 =

1
98




13
136
341


 .

Solving




1 1
1 4
1 9




[
a
b

]
= 1

98




13
136
341


, we get a = −14

49 , b = 41
98 .
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