
The Real Jordan Canonical Form and the Rational Canonical Form

Not all matrices over a given field have a Jordan canonical form as not all polynomials split
completely into linear factors. For example, over the reals one can have irreducible quadratic factors.
A field in which every polynomial splits completely into a product of linear factors over that field is
said to be algebraically closed. An example, of such a field is the field of complex numbers.

Let A be an n× n real matrix and let T = TA : Rn×1 → Rn×1 be the associated linear operator.
The minimal polynomial mA(X) of A has the form

(X − c1)m1 · · · (X − ck)mk((X − a1)2 + b2
1)

n1 · · · ((X − a`)2 + b2
`)

n`

which has the factorization

(X − c1)m1 · · · (X − ck)mk(X − α1)n1(X − α1)n1 · · · (X − α`)n`(X − α`)n`

over C with αj = aj + bji, αj = aj − bji. Since the nullity of a real matrix is the same as the nullity
of the matrix viewed as a complex matrix, the number of Jordan blocks Jr(λ) with λ real can be
computed as before. The complex Jordan blocks come in conjugate pairs J = Jr(a+ib), J = Jr(a−ib)
and their number of such pairs is sr/2 where

s = (s0, s1, . . . , sj , . . .) = −R(L− 1)2(d),

where d = (d0, d1, . . . , dj , . . .) with dj = nullity((A − a)2 + b2)j. If u ∈ Cn×1 is the cyclic vector
associated to Jr(a + bi) then u is a cyclic vector for Jr(a− ib). If

g =
u− u

2i
, h =

u + u

2
,

then g, h are real vectors such that, over C,

W = Span(g, h, T(g), T(h), . . . , Tr−1(g),Tr−1(h)) = Span(u, u, T(u), T(u), . . . , Tr−1(u), Tr−1(u))

If u1 = (T − α)r−1(u), . . . , ur−1 = (T − α)(u), ur = u and α = a + bi then

T (u1) = αu1, T (uj) = αuj + uj−1 for 2 ≤ j ≤ r.

Setting f2j−1 = uj−uj

2i , f2j = uj+uj

2 for 1 ≤ j ≤ r, we get

T (f2j−1) = af2j−1 + bf2j + f2j−3, T (f2j) = −bf2j−1 + bf2j + f2j−2

for 2 ≤ j ≤ r and T (f1) = af1 + bf2, T (f2) = −bf1 + af2. The real vectors f1, . . . , f2r are linearly
independent and span W . The matrix of the restriction of T to the subspace of Rn×1 spanned by
f1, . . . , f2r with respect to f = (f1, . . . , f2r) is the 2r × 2r block matrix RJr(a, b) = [Bij ] with

Bii =
[
a −b
b a

]
, Bi(i+1) =

[
1 0
0 1

]

and Bij the zero 2× 2 matrix for all other i, j. We thus obtain the following theorem:
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Theorem. If T is a linear operator on a finite-dimensional real vector space then there is a basis
for V such that the matrix of T with respect to this basis has a block diagonal form with blocks of
the form Jk(a) or RJk(a, b). Moreover, if sk is the number of blocks of the form Jk(a), then

s = (s0, s1, . . . , si, . . .) = −R(L− 1)2(d)

where d = (d0, d1, . . . , di, . . .) with di = dim Ker((T− a)i). If sk is the number of blocks of the form
RJk(a, b), then

s = (s0, s1, . . . , si, . . .) = −R(L− 1)2(d)

where d = (d0, d1, . . . , di, . . .) with 2di = dimKer(((T− a)2 + b2)i).

Corollary 1. If A,B are real matrices that are similar over C then they are similar over R.

Corollary 2. Every real or complex square matrix is similar to its transpose.

Proof. Because of Corollary 1, we can assume that the matrix A is complex. We can also
assume that A is in Jordan canonical form in which case we are reduced to proving the corollary in
the case A is a Jordan matrix. This is left as an exercise for the reader.

If f(X) is a polynomial over a field F , we can always construct a field K containing F as a
subfield in which f(X) splits completely into linear factors. One can even construct such a field
which is algebraically closed. as a result, we obtain the Cayley-Hamilton Theorem. Namely, if
∆T (X) is the characteristic polynomial of T , then ∆T (T ) = 0.

There is a canonical form for the matrix of a linear operator T on a finite-dimensional vector
space V over F , called the rational canonical form. The vector space V is a direct sum of cyclic
subspaces, ie, subspaces having a basis of the form

v, T (v), . . . , T p−1(v)

with T p(v) = c1T
p−1(v) + · · · + cp−1T (v) + cpv. Such a vector v is called a cyclic vector for T .

This subspace, called the cyclic subspace for T generated by v, is T -invariant and the matrix of the
restriction of T to this subspace is the p× p matrix




0 0 0 · · · cp

1 0 0 · · · cp−1

0 1 0 · · · cp−2

0 0 1 · · · cp−3

...
0 0 0 · · · c1




.

This matrix is called the companion matrix of the cyclic vector v. Since the polynomial f(X) is
uniquely determined by v, this matrix is also called the companion matrix of f(X) and is denoted
by Cf . The polynomial f(X) is the minimal polynomial of Cf and therefore of the restriction of T
to the cyclic subspace generated by v.

If the minimal polynomial mT (X) of T has the primary decomposition

mT (X) = p1(X)m
1 · · · pk(X)m

k
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with pi(X) irreducible then V is the direct sum of cyclic subspaces with companion matrices Cf

where f(X) = pi(X)j , 1 ≤ i ≤ k, 1 ≤ j ≤ mi. Moreover, if sj is the number of summands with
f(X) = pi(X)j , then

s = (s0, s1, . . . , sj , . . .) = −R(L− 1)2(d),

where d = (d0, d1, . . . , dj , . . .) with dj = dim Ker(pi(T)j)/degree(pi(X). The proof of this result
is exactly the same as the proof of the Jordan canonical form except that pi(T ) replaces T − ai

and the vector spaces Wij = Ker(pi(T)j)/Ker(pi(T)j−1 are viewed as vector spaces over the field
Ki = F [X]/(pi(X)), where

f(X) · g(T ) = f(T )g(T ).

This field is a vector space over F of dimension `i = degree(pi(X)) with basis 1, X, . . . , X
`i−1

. Thus

dimF (Wij) = `i dimKi
(Wij).

This explains the formula for dj . The cyclic vectors giving the direct sum decomposition are repre-
sentatives of basis vectors for the quotient spaces Wij/Im(Sij) where Sij is the linear mapping from
Wi(j+1) to Wij defined by

Sij(u) = pi(T )(u).

The details are left to the reader.
It follows that two n×n matrices over F which are similar over a field containing F as a subfield

are similar over F . This implies, for example, that a square matrix is similar to it transpose.
Example. Let us find the rational canonical form of the matrix

A =




1 1 1 0
1 −1 1 1
0 0 0 2
0 0 1 0


 .

over the field Q of rational numbers. This matrix can be viewed as an upper triangular 2× 2 block
matrix with blocks that are 2 × 2 matrices. Since the diagonal blocks have minimum polynomial
X2 − 2, it follows that (A2 − 2)2 = 0. We leave it to the reader to formulate a more general result.
We have

A2 − 2 =




2 0 2 3
0 2 0 1
0 0 0 0
0 0 0 0


 , (A2 − 2)2 = 0

so that Null(A2 − 2) = Span(e1, e2), Null((A− 2)2) = (e1, e2, e3, e4). Hence

Null((A2 − 2)2)/Null(A2 − 2) = Span(e3, e4) = SpanK(e3)

where K = Q[X]/(X2 − 2) ∼= Q[
√

2]. Note that Xe3 = Ae3 = 2e4. We also have

Null(A2 − 2) = Span(e1, e2) = SpanK(e1)

since Xe1 = Ae1 = 2e2. Since d = (0, 1, 2, 2, . . .), we have s = −R(L − 1)2(d) = (0, 0, 1, 0, 0, . . .)
so that we have only one cyclic subspace in the direct sum decomposition of Q6 with cyclic vector
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e3. Since (X2 − 2)2 = X4 − 4x2 + 4 is the companion polynomial of this cyclic vector, there is an
invertible matrix over Q such that

P−1AP =




0 0 0 −4
1 0 0 0
0 1 0 4
0 0 1 0


 .

Moreover, the columns of P are the vectors e3, Ae3, A
2e3, A

3e3 so that

P =




0 1 2 4
0 1 0 4
1 0 2 0
0 1 0 2


 .

The minimum of A is (X2 − 2)2. This is also the characteristic polynomial of A. We leave it to the
reader to show that the Jordan canonical form of A over the field Q[

√
2] is




√
2 1 0 0

0
√

2 0 0
0 0 −√2 1
0 0 0 −√2


 .
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