
Notes on the Dual Space

Let V be a vector space over a field F . The dual space of V is the vector space V ∗ = Lin(V, F ) consisting
of the linear mappings φ : V → F . The elements of V ∗ are called linear forms or linear functionals. If V has
basis e = (ei)i∈I then any vector v ∈ V can be written uniquely in the form v =

∑
i∈I xiei with xi = 0 for

all but a finite number of i ∈ I. If φ ∈ V ∗ then φ(v) =
∑

i∈I aixi where ai = f(ei). Conversely, if (ai)i∈I is
a family of scalars indexed by I then

φ(v) =
∑

i∈I

aixi

defines a linear form φ on V with φ(ei) = ai. In particular, e∗i (v) = xi defines a linear form on V called the
i-th coordinate function for the basis e = (ei)i∈I . If I is a finite set then any φ ∈ V ∗ can be uniquely written
in the form

φ =
∑

i∈I

aie
∗
i

with ai ∈ F . We have ai = φ(ei) since e∗i (ej) = δij (the Kronecker delta). Hence, in this case, e∗ = (e∗i )i∈I

is a basis for V ∗, the basis of V ∗ dual to the basis e = (ei)i∈I or dual basis. We thus have the result

Theorem 1. If V is a finite-dimensional vector space then dim(V ) = dim(V ∗).

If the basis (ei) is infinite then the subspace W of V ∗ spanned by the vectors e∗i (i ∈ I) is a proper
subspace of V . For example, the linear form φ with φ(ei) = 1 for all i is not in W since φ(ei) = 0 for all but
a finite number of i if φ ∈ W . In fact, using set theory, one can show that dim(V ∗) > dim(V ) if dim(V ) is
not finite.

Example 1. If V = FX is the set of F -valued functions on X then, for any x ∈ X, the function ex :→ F
defined by ex(f) = f(x) (evaluation at x) is a linear form on V .

Example 2. If V = CR([a, b]) is the vector space of continuous real-valued functions on the interval [a, b]
then

φ(f) =
∫ b

a

f(x) dx

defines a linear form on V .

Example 3. If V = Fn and φ ∈ V ∗ then

φ(x1, . . . , xn) = a1x1 + · · · anxn = [a1, a2, . . . , an]




x1

x2

...
xn




where [a1, a2, . . . , an] = [φ] is the matrix of φ.

If S is a subset of the vector space V then the annihilator of S is the set

S0 = {φ ∈ V ∗ | φ(s) = 0 for all s ∈ S}

consisting of those linear forms on V which vanish on S. We have

S0 = (span(S))0.

If W is a subspace of Fn then the elements of W 0 give the hyperplanes a1x1 + · · ·+ anxn = 0 which contain
W .
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Example 4. If W = Span((1, 1, 1)) then W 0 = Span(φ1, φ2) where φ1(x1, x2, x3) = x1−x2, φ2(x1, x2, x3) =
x2 − x3.

If W is a subspace of V we can define a linear mapping T : W 0 → (V/W )∗ by

T (φ)(v + W ) = φ(v).

The function T (φ) is well defined on V/W since φ vanishes on W . That T (φ) is linear is left to the reader
as well as the fact that T is injective. If ψ is a linear form on V/W then φ(v) = ψ(v + W ) defines a linear
form on V and ψ = T (φ) which shows that T is surjective and hence an isomorphism.

Theorem 2. If W is a subspace of the vector space V then

W 0 ∼= (V/W )∗.

If dim(V/W ) < ∞ then
dim(W 0) = codim(W ),

where codim(W ) = dim(V/W ). If dim(V ) < ∞, we have

dim(W 0) = dim(V )− dim(W ).

There is a canonical mapping R of a vector space V into its second dual V ∗∗ = (V ∗)∗ defined by
R(v) = v∗∗ where v∗∗(φ) = φ(v). The proof of the linearity of v∗∗ and R are left to the reader. If R(v) = 0
we have φ(v) = 0 for all φ ∈ V ∗. If v 6= 0 then it can be completed to a basis B of V . Then the linear
form v∗ which is 1 on v and 0 on the other vectors in B contradicts the fact that φ(v) = 0 for all φ ∈ V ∗.
If V is finite-dimensional, the mapping R is surjective since dim(V ) = dim(V ∗∗). In this case, we use the
isomorphism R to identify V with its second dual.

If W is a subspace of V ∗, we define the annihilator of W in V to be the set

W 0 = {v ∈ V : φ(v) = 0 for all φ ∈ W}.
If dim(V ) < ∞ then R(W 0) = {v∗∗|v∗∗(φ) = 0 for all φ ∈ W} is the annihilator of W in V ∗∗ which gives
the following result.

Theorem 3. If V is finite-dimensional and W is a subspace of V ∗ then dim(W 0) = codim(W).

This can also be proven by showing that the mapping v 7→ v∗ of W 0 into (V ∗/W )∗, where v∗(φ + W ) =
φ(v) is an isomorphism when V is finite-dimensional.

Corollary 4. If dim(V ) < ∞ and W is a subspace of V or V ∗ then W 00 = W .

This follows from the fact that W ⊆ W 00. Since W1 ⊆ W2 implies W 0
2 ⊆ W 0

1 we get, in the case V
is finite-dimensional, an inclusion reversing bijection W 7→ W 0 between the the subspaces of V and the
subspaces of W . The corresponding subspaces are said to be dual to one another.

Theorem 5. If W1,W2 are subspaces of a vector space V we have (W1 +W2)0 = W 0
1 ∩W 0

2 . If dim(V ) < ∞
we also have (W1 ∩W2)0 = W 0

1 + W 0
2 .

The proof is left to the reader.

If T : U → V is a linear mapping the transpose of T is the mapping T t : V ∗ → U∗ defined by

T t(φ) = φ ◦ T.

The proof that T t is linear is left to the reader as is the fact that the mapping T 7→ T t is linear. If U, V are
finite-dimensional then (T t)t(u∗∗) = u∗∗ ◦ T t and

u∗∗ ◦ T t(φ) = u∗∗ ◦ φ ◦ T = φ(T (u) = T (u)∗∗(φ)

for φ ∈ V ∗∗ so that (T t)t = T after identifying U and V with their duals. If S : V → W then (ST )t = T tSt

since
(ST )t(φ) = φ ◦ ST = St(φ) ◦ T = T t(St(φ)) = T tSt(φ)

for φ ∈ U∗.
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Theorem 6. If T : U → V is linear then

(Im(T))0 = Ker(Tt) and (Im(Tt))0 = Ker(T).

The proof is left to the reader.

If U, V are vector spaces with bases e = (e1, . . . , e), f = (f1, . . . , fm) respectively and T : U → V is a
linear mapping then

T (ej) =
m∑

i=1

aijfi.

The m × n matrix A = [aij ] is the matrix [T ]fe of T with respect to the bases e, f . If e∗ = (e∗1, . . . , e
∗
n),

f∗ = (f∗1 , . . . , f∗m) are the corresponding dual bases then

T t(f∗i ) =
n∑

j=1

bjie
∗
j .

The matrix n×m matrix B = [bji] is the matrix [T t]e
∗

f∗ of T t with respect to the bases f∗, e∗. Since

bji = T t(f∗i )(ej) = f∗i (T (ej)) = aij ,

we see the the (j, i)-th entry of B is the (i, j)-th entry of A. The matrix B is called the transpose of A and
is denoted by At.

Theorem 7. If U, V are vector spaces with bases e = (e1, . . . , e), f = (f1, . . . , fm) respectively and T : U → V
is a linear mapping then

[T t]e
∗

f∗ = ([T ]fe )t.

The linearity of the transpose for matrices as well as (At)t = A and (AB)t = BtAt follow from the above.

If A ∈ Fm×n, we have two linear mappings TA : Fn×1 → Fm×1, TA : F 1×m → F 1×n defined by

TA(X) = AX, TA(Y ) = AY.

If we identify (Fn×1)∗ with F 1×n using the isomorphism φ 7→ [φ] then (TA)t = TA. We have

Ker(TA) = Null(A), Im(TA) = Col(A), Ker(TA) ∼= Null(At), Im(TA) = Row(A) ∼= Col(At)

where the isomorphisms are defined by the transpose. If W is a subset of Fn×1 then

W 0 = {Y ∈ F 1×n | Y X = 0 for all X ∈ W}

and if W is a subset of F 1×n then

W 0 = {X ∈ Fn×1 | Y X = 0 for all Y ∈ W}.

Since (Im(TA)0 = Null(TA) and (Im(TA))0 = Ker(TA), we have

Col(A)0 = {Y ∈ F1×m | YA = 0} = {Y ∈ F1×m | AtYt = 0}, Row(A)0 = Null(A)

It follows that
rank(A) + nullity(At) = m, rank(At) + nullity(A) = n.

In particular, rank(A) = m− nullity(At) = rank(At). Since Row(A) = Row(A)00, we also have

Row(A) = Null(A)0.

Thus two m× n matrices which have the same also have the same row space.
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There is a canonical form for the row space of a matrix A, namely, its reduced echelon form REF(A).
This m×n matrix is row equivalent to A and so has the same row space as A. It has the following properties:

(a) The non-zero rows precede the zero rows;

(b) The first non-zero entry in a non-zero row is 1;

(c) If the first-nonzero entry in row i occurs in column ji then j1 < j2 < · · · < js, where s is the number of
non-zero rows;

(d) For 1 ≤ i ≤ s, there is exactly one non-zero entry in column ji.

The natural number s is the dimension of the row space of A.

Theorem 8. Let A,A′ be m× n matrices over a field F . Then the following are equivalent:

(1) There an invertible matrix P such that A′ = PA;

(2) Row(A) = Row(A′);

(3) REF(A) = REF(A′).

Proof. As (1) =⇒ (2) and (3) =⇒ (1) are immediate, we only give the proof of (2) =⇒ (3). We proceed
by induction on the common number of non-zero rows of A and B. Let A1, . . . , As be the non-zero rows of
A and let A′1, . . . , A

′
s be the non-zero rows of A′. Let j1, . . . , js and j′1, . . . , j

′
s be the distinguished columns

of A and B respectively. Since A1 = A′1 + a2A
′
2 + . . . + A′s we have j1 = j′1. It follows that

Span(A2, . . . , As) = Span(A′2, . . . , A
′
s).

Thus the matrices obtained from A and A′ by deleting their first row have the same row space and are in
reduced echelon form. By our inductive hypothesis, these two matrices are equal. It follows that A1 = A′1.
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