Basis and Dimension

Let V be a vector space over a field F. If vy, v9,...,v,V is a sequence of vectors in V' then by a
linear combination of these vectors we mean a vector of V' of the form

a1V + a2V + ...+ ApUn,

with a1, a9,...,a, € F. If n =0, this is an empty sum which, by convention, is the zero vector. The
set of all linear combinations of elements the vectors vq, v, ..., v, is denoted by span(vy,va,...,v,)
and is called the linear span of vq,vs,...,v,. Note that span()) = {0}. More generally, if S is a
subset of V' then

span(S) ={v eV | (Tn>0,a1,...,a, € Fyv1,...05 € S)v = a1v1 + agv2 + ... anvy }

is the set of all linear combinations of elements of S.

Theorem 1. If S is a subset of the vector space V then span(S) is a subspace of V. It is the
smallest subspace of V' which contains S; if W is a subspace of V' containing S then span(S) C W.

Generating Set. If the vector space V' = span(.S) then the vector space V is said to be spanned
or generated by S. The set S is then called a spanning or generating set. If V' = span(S) with S
finite then V is said to be finitely generated.

Linearly Independent Set. A subset S of a vector space V is said to be linearly independent if
v ¢ span(S — {v}) for all v € S. This is equivalent to the statement that for any distinct vectors
v1, V3, ..., U, the relation

aivy + asvs + ...+ ayv, =0

implies that the scalars a1, as, ..., a, are all zero. Note that the empty set is a linearly independent
set. If S is not a linearly dependent set then there are distinct vectors vy, vs,...,v, and scalars
ai,as,...,a, not all zero such that

ai1v1 + asvs + ... + anv, = 0.
In this case, S is said to be a linearly dependent set. If a; # 0 then v; € span(S — {v;}) = span(S).
Note that any set S containing the zero vector is linearly dependent.

Dependence Relations. If vi,vs,...,v, are vectors in V' then by any relation of the form
aivy + asve + ...+ ayv, =0

is said to be a dependence relation for the sequence (v, vs, ..., v,). The dependence relation is said
to be trivial if n > 1 and a1 = a3 = --- = a, = 0. If the only dependence relation is the trivial
one then the vectors vy, ve,...,v, are distinct and S = {vy,vs,...,v,} is a linearly independent
set. In this case, we also say that the sequence (v1,vs,...,v,) is linearly independent. If there
are on trivial dependence relations for the sequence (v1,vs,...,v,) then we say that the sequence
is linearly dependent. Note that the sequence (vy,vs,...,v,) can be linearly dependent while the
set {v1,v2,...,v,} is linearly independent. This can only happen if v; = v; for some i # j. For
example, if v is any non-zero vector, then (v, v) is linearly dependent while {v,v} = {v} is linearly
independent.

Basis. A basis for a vector space is a linearly independent generating set.

Theorem 2. Let S be a subset of a vector space V. Then the following are equivalent:
(a) The set S is maximal linearly independent subset of V;
(b) The set S is a maximal generating subset of V;

(¢) The set S is a basis for V.



Proof. (a) = (c). If S is a maximal linearly independent subset of V' and V # span(S) then
there is a vector v € V such that v ¢ span(S). But then the following Lemma shows that S U {v}
is a linearly independent subset of V' larger than S which is impossible.

Lemma. If S is a linearly independent subset of a vector space V and v € V, v ¢ span(S) then
S U{v} is a linearly independent subset of V.

Proof of Lemma. If SU {v} is linearly dependent then there are distinct vectors vy, ve, ..., v, in
S and scalars aq,as,...,ay,,a, not all zero, with

ai1v1 + asvs + ...+ ayv, +av = 0.

We must have a = 0 since v ¢ span(S). But then ayv; + agva + ... + a,v, = 0 is a non-trivial
dependence relation for the vectors vy, vs, ..., v, contradicting the linear independence of the set S.

(¢) = (b). If S is a basis for V then S is a generating set for V. The set S is a minimal generating
set since the linear independence of S implies v ¢ span(S — {v}) for any v € V.

(b) = (c). If S is a minimal generating subset of V then, for any v € V, we have span(S — {v}) #
V = span(S) which implies that v ¢ span(S—{v}) since v € span(S—{v}) implies S C span(S—{v})
and hence that V' = span(S) C span(S — {v}) which is not the case.

(¢) = (a). If S is a basis for V then v € span(S) forallv € V. If v € V — S then T = S U {v} is
linearly dependent since S =T — {v}. QED

Replacement Theorem. Let V' = span(S) be a vector space over a field F' and let T be a linearly
independent subset of V. Then there is an injective mapping f of T into S such that

span(S) = span((S — f(T))UT).

Proof. We give the proof for the case S, T are finite. The proof can be adapted to prove the general
case.

Choose an ordering of S UT so that the elements of T' come before the elements of S — T and
the elements of Ty = SNT come before the elements of T'— Ty. Define fo : To — S by fo(v) = v for
v € Ty. Then fy is injective and

span(S) = span((S — fo(Tp)) U Tp)

since S = (S — fo(Tp)) UTp. Let f be an extension of fj to an injective mapping with range a subset
of S and domain Dy C T largest possible with the following two properties:

(a) ue Dy and v <u = v € Dy;

(b) span(S) = span((S — f(Dy)) U D).

Suppose that Dy # T and let v be the smallest element of 7' — Dy. Then
V= a1u; + QU2 + - - - GpUy

with u; € (S — f(Dy))UDy, w1 < ug--- < uy, and aq,as,...,a, 7 0. In this case, u, ¢ f(Dy).
Otherwise, we have u,, € Dy which implies that uw; € Dy for all ¢ by property (a) and hence that
v € Span(Dy) which is impossible since {v} U Dy is an independent set. Let u = u,,. Then

u € span(uy, ug, . . ., Up—1,v) = span(ui, ug, ..., Up_1,V)

so that, setting Sy = (S — f(Dy))U Dy, we have span(Sy) = span((Sy — {u}) U {v}). We now define
an extension g of f with domain Dy U {v} by setting g(v) = u. Then g is injective since u ¢ f(Dy).
We also have that v € Dy and v < u = v € D,. In addition, since

(5= 9(Dy)) U Dy = (Sp — {u}) U{v},



we have span(S) = span((S — g(Dy)) U D) which which is impossible since D, is bigger than Dy.
Hence Dy =T. QED

Theorem 3. If V is a vector space then V' has a basis and any two bases of V have the same
number of elements.

Proof. We prove this in he case V is finitely generated. The proof can be adapted to prove the
general case.

Let V = span(S) with |S| = cardinality of S finite. Since the number of elements of a linearly
independent subset of V' is at most the number of elements of S, there is a maximal linearly inde-
pendent subset of V. By Theorem 2, this set is a basis for V. If T1, T are two bases of V' then, by
the Replacement Theorem, |T1| < |T3| and |T2| < |T1] so that |T1| = |T2|. QED

Dimension. The dimension of a vector space V is the number of elements in a basis for V. The
dimension of V is denoted by dim(V'). Two vector spaces are isomorphic if and only if they have
the same dimension.

Corollary. Let V be a finite dimensional vector space. If W is a subspace of V' then
dim(W) < dim(V)

with equality if and only if W = V.

Remark. The proofs of of the Replacement Lemma and Theorem 3 in the general case require the
use of Zorn’s Lemma and the Well Ordering Principle, both of which are equivalent to the Axiom
of Choice.
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