
Basis and Dimension

Let V be a vector space over a field F . If v1, v2, . . . , vnV is a sequence of vectors in V then by a
linear combination of these vectors we mean a vector of V of the form

a1v1 + a2v2 + . . . + anvn,

with a1, a2, . . . , an ∈ F . If n = 0, this is an empty sum which, by convention, is the zero vector. The
set of all linear combinations of elements the vectors v1, v2, . . . , vn is denoted by span(v1, v2, . . . , vn)
and is called the linear span of v1, v2, . . . , vn. Note that span(∅) = {0}. More generally, if S is a
subset of V then

span(S) = {v ∈ V | (∃n ≥ 0, a1, . . . , an ∈ F, v1, . . . vn ∈ S)v = a1v1 + a2v2 + . . . anvn}

is the set of all linear combinations of elements of S.

Theorem 1. If S is a subset of the vector space V then span(S) is a subspace of V . It is the
smallest subspace of V which contains S; if W is a subspace of V containing S then span(S) ⊆ W .

Generating Set. If the vector space V = span(S) then the vector space V is said to be spanned
or generated by S. The set S is then called a spanning or generating set. If V = span(S) with S
finite then V is said to be finitely generated.

Linearly Independent Set. A subset S of a vector space V is said to be linearly independent if
v /∈ span(S − {v}) for all v ∈ S. This is equivalent to the statement that for any distinct vectors
v1, v2, . . . , vn the relation

a1v1 + a2v2 + . . . + anvn = 0

implies that the scalars a1, a2, . . . , an are all zero. Note that the empty set is a linearly independent
set. If S is not a linearly dependent set then there are distinct vectors v1, v2, . . . , vn and scalars
a1, a2, . . . , an not all zero such that

a1v1 + a2v2 + . . . + anvn = 0.

In this case, S is said to be a linearly dependent set. If ai 6= 0 then vi ∈ span(S − {vi}) = span(S).
Note that any set S containing the zero vector is linearly dependent.

Dependence Relations. If v1, v2, . . . , vn are vectors in V then by any relation of the form

a1v1 + a2v2 + . . . + anvn = 0

is said to be a dependence relation for the sequence (v1, v2, . . . , vn). The dependence relation is said
to be trivial if n ≥ 1 and a1 = a2 = · · · = an = 0. If the only dependence relation is the trivial
one then the vectors v1, v2, . . . , vn are distinct and S = {v1, v2, . . . , vn} is a linearly independent
set. In this case, we also say that the sequence (v1, v2, . . . , vn) is linearly independent. If there
are on trivial dependence relations for the sequence (v1, v2, . . . , vn) then we say that the sequence
is linearly dependent. Note that the sequence (v1, v2, . . . , vn) can be linearly dependent while the
set {v1, v2, . . . , vn} is linearly independent. This can only happen if vi = vj for some i 6= j. For
example, if v is any non-zero vector, then (v, v) is linearly dependent while {v, v} = {v} is linearly
independent.

Basis. A basis for a vector space is a linearly independent generating set.

Theorem 2. Let S be a subset of a vector space V . Then the following are equivalent:

(a) The set S is maximal linearly independent subset of V ;

(b) The set S is a maximal generating subset of V ;

(c) The set S is a basis for V .



Proof. (a) =⇒ (c). If S is a maximal linearly independent subset of V and V 6= span(S) then
there is a vector v ∈ V such that v /∈ span(S). But then the following Lemma shows that S ∪ {v}
is a linearly independent subset of V larger than S which is impossible.

Lemma. If S is a linearly independent subset of a vector space V and v ∈ V , v /∈ span(S) then
S ∪ {v} is a linearly independent subset of V .

Proof of Lemma. If S ∪ {v} is linearly dependent then there are distinct vectors v1, v2, . . . , vn in
S and scalars a1, a2, . . . , an, a, not all zero, with

a1v1 + a2v2 + . . . + anvn + av = 0.

We must have a = 0 since v /∈ span(S). But then a1v1 + a2v2 + . . . + anvn = 0 is a non-trivial
dependence relation for the vectors v1, v2, . . . , vn contradicting the linear independence of the set S.

(c) =⇒ (b). If S is a basis for V then S is a generating set for V . The set S is a minimal generating
set since the linear independence of S implies v /∈ span(S − {v}) for any v ∈ V .

(b) =⇒ (c). If S is a minimal generating subset of V then, for any v ∈ V , we have span(S−{v}) 6=
V = span(S) which implies that v /∈ span(S−{v}) since v ∈ span(S−{v}) implies S ⊆ span(S−{v})
and hence that V = span(S) ⊆ span(S − {v}) which is not the case.

(c) =⇒ (a). If S is a basis for V then v ∈ span(S) for all v ∈ V . If v ∈ V − S then T = S ∪ {v} is
linearly dependent since S = T − {v}. QED

Replacement Theorem. Let V = span(S) be a vector space over a field F and let T be a linearly
independent subset of V . Then there is an injective mapping f of T into S such that

span(S) = span((S − f(T )) ∪ T ).

Proof. We give the proof for the case S, T are finite. The proof can be adapted to prove the general
case.

Choose an ordering of S ∪ T so that the elements of T come before the elements of S − T and
the elements of T0 = S ∩ T come before the elements of T − T0. Define f0 : T0 → S by f0(v) = v for
v ∈ T0. Then f0 is injective and

span(S) = span((S − f0(T0)) ∪ T0)

since S = (S−f0(T0))∪T0. Let f be an extension of f0 to an injective mapping with range a subset
of S and domain Df ⊆ T largest possible with the following two properties:

(a) u ∈ Df and v < u =⇒ v ∈ Df ;

(b) span(S) = span((S − f(Df )) ∪Df ).

Suppose that Df 6= T and let v be the smallest element of T −Df . Then

v = a1u1 + a2u2 + · · · anun

with ui ∈ (S − f(Df )) ∪ Df , u1 < u2 · · · < un and a1, a2, . . . , an 6= 0. In this case, un /∈ f(Df ).
Otherwise, we have un ∈ Df which implies that ui ∈ Df for all i by property (a) and hence that
v ∈ Span(Df) which is impossible since {v} ∪Df is an independent set. Let u = un. Then

u ∈ span(u1, u2, . . . , un−1, v) = span(u1, u2, . . . , un−1, v)

so that, setting Sf = (S− f(Df ))∪Df , we have span(Sf ) = span((Sf −{u})∪{v}). We now define
an extension g of f with domain Df ∪ {v} by setting g(v) = u. Then g is injective since u /∈ f(Df ).
We also have that u ∈ Dg and v < u =⇒ v ∈ Dg. In addition, since

(S − g(Dg)) ∪Dg = (Sf − {u}) ∪ {v},



we have span(S) = span((S − g(Dg)) ∪Dg) which which is impossible since Dg is bigger than Df .
Hence Df = T . QED

Theorem 3. If V is a vector space then V has a basis and any two bases of V have the same
number of elements.

Proof. We prove this in he case V is finitely generated. The proof can be adapted to prove the
general case.

Let V = span(S) with |S| = cardinality of S finite. Since the number of elements of a linearly
independent subset of V is at most the number of elements of S, there is a maximal linearly inde-
pendent subset of V . By Theorem 2, this set is a basis for V . If T1, T2 are two bases of V then, by
the Replacement Theorem, |T1| ≤ |T2| and |T2| ≤ |T1| so that |T1| = |T2|. QED

Dimension. The dimension of a vector space V is the number of elements in a basis for V . The
dimension of V is denoted by dim(V ). Two vector spaces are isomorphic if and only if they have
the same dimension.

Corollary. Let V be a finite dimensional vector space. If W is a subspace of V then

dim(W ) ≤ dim(V )

with equality if and only if W = V .

Remark. The proofs of of the Replacement Lemma and Theorem 3 in the general case require the
use of Zorn’s Lemma and the Well Ordering Principle, both of which are equivalent to the Axiom
of Choice.
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