McGill University MATH 251: Algebra 2 Assignment 3: due Monday, February 9, 2004

- 1. Determine whether the following subsets of $\mathbb{R}^{\mathbb{R}}$ are linearly independent or not.
 - (a) $S = \{e^x, e^{2x}, e^{3x}\};$ (b) $S = \{\sin(x+1), \sin(x+2), \sin(x+3)\};$ (c) $S = \{(x+1)^2, (x+2)^2, (x+3)^2\}.$
- 2. Let $V = \mathbb{R}^{2 \times 2}$, let $A \in V$ and let $T: V \to V$ be defined by T(X) = AX XA.
 - (a) Show that T is a linear mapping;
 - (b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find bases for the kernel and image of T;
 - (c) If A is as in (b), find the matrix of T with respect to the basis

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

What is the rank and nullity of this matrix?

- 3. Let $s_n = \sum_{k=0}^n k 2^k$ and let $s = (s_0, s_1, \dots, s_n, \dots) \in \mathbb{R}^{\mathbb{N}}$.
 - (a) Show that $s \in \text{Ker}(L-1)(L-2)^2$, where L is the left shift operator;
 - (b) Show that $u = (1, 1, ..., 1, ...), v = (1, 2, ..., 2^n, ...), w = (0, 2, ..., n2^n, ...)$ form a basis for Ker $(L-1)(L-2)^2$; (**Hint:** Use problem 5 of assignment 1.)
 - (c) Use (b) to find a formula for s_n .
- 4. Let $V = C^{\infty}(\mathbb{R})$ be the vector space of infinitely differentiable real valued functions on the real line. Let D be the differentiation operator on V and let E_a be the operator defined by $E_a(f(x)) = e^{ax} f(x)$.
 - (a) Show that E_a is invertible with inverse E_{-a} ;
 - (b) Show that $(D-a)E_a = E_aD$ and deduce that $(D-a)^n = E_aD^nE_a^{-1}$;
 - (c) Using (b), find a basis for $\text{Ker}(D-a)^n$.