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Math 247: Honours Applied Linear Algebra
Solutions to Assignment 4

() A2 — (a+d)A+ (ad— be)l = a? +be — (a+ d)a + ad — be ab +bd — (a + d)b }_[0 0}

ac+cd — (a+d)e be+d* — (a+d)d+ad—bc| ~ |0 0|

(b) If m(z) = 2% — (a + d)x + (ad — be) we have m(A) = 0 by (a) and so the minimal polynomial m 4(z) of A
divides m(x). Since A is not a scalar multiple of the identity matrix the degree of m4(z) is not 1 and so
ma(z) = m(z) since both polynomials are monic and of the same degree.

(c) If ma(z) = (x — A\)? we have A — A # 0 which implies the existence of a column matrix P, with

= (A—A)P; # 0.Then AP, = APy, AP, = P, + \P;. If P is the matrix whose columns are Py, P; then
Al
0 A
of the linear operator T4 on F2*! defined by T4(X) = AX with respect to the basis Py, P,. Conversely
if P"1AP = B then B is the matrix of T4 with respect to the basis formed by the columns of P so that
the minimal polynomial of T4 is equal to mp(z) = (x — \)2.

P is invertible since P, is not a scalar multiple of P; and P~'AP = [ ] = B since B is the matrix

We are given that 11 = /24 Yn/3, Ynt+1 = Tn/2+ 2y, /3 which proves the assertion. It follows by induction

that Cam
W=

is 22— (7/6)z+1/6 = (x —1)(z — 1/6) so that the eigenvalues of A are

N[00 =

The minimal polynomial of A = [

r—|w\l\x&>\’—‘
—

1 and 1/6. Since Null(A — 1) = Span( :2)’ and Null(4 — (1/6)I) = Span( {_11 we see that P1AP = [(1) 1?6}
here P = 2 . Hence A= P P~1so that A" = P Loy pPl=p 10 P~1. Hence

W k] o 1/6 0 1/6 ~Ylo 1/6m '

. w0 2 2 (] [2 2] [1/2]  [2/5

lim, o A" = P [0 1/6] P —P{ } E g] so that lim,, o yn] = E § 12| = [3/5]"

Since ma(z) = 2% —(a+d)z+ad—bc we have m 4 (1) = 1—(a+d)+ad—bc = 1—(a+1-b)+a(1—b)—b(1—a) = 0.

Hence ma(z) = (x — 1)(x — r). Sincea+d=1+r and 0<a-+d<2wehave —1 < r < 1. Since my(x)
is a product of distinct linear factors there is an invertible matrix P such that P~!AP is a diagonal matrix
with diagonal entries 1,r. It follows as above that B = lim,,_,,, A" exists. Since AB = B the columns of B
are eigenvectors of A with eigenvalue 1. Also, since the product of stochastic matrices is stochastic, it follows

that B is stochastic. Hence, if {g

second column of B must be ¢X for some scalar ¢ since dim Null(A — I) = 1. Now ca + ¢ = 1 implies ¢ = 1.

} is the first column of B it is an eigenvector of A with X = a4+ 3 = 1. The

(a) Wehave (1 +T+T?+---4+T" N1 -T)=1-T)A+T+T?+---+T"!) =
1+T+T?*+ T - (TH+T?*+- 4T =T" = 0.

(b) Since (T —b) =T —a+a—>b) =(a—>b)(1—.8) with S = (T —a)/(b—a). Since S™ = 0 we see by (a)
that 1 — S is invertible and hence T — b is invertible with (T'—b)"! = (a —b) "1 (1 4+ S + ...+ S"1).

(c) Since W = Null(D — 2)? = Span(e?*xe?®) is D-invariant we can restrict D to W to get a linear operator
R on W with (R —2)? = 0. By (b) the operator R — 1 is invertible with (R —1)~! =1 — (R — 2). Hence
(R—1)?% is invertible with (R—1)?2 = (1—(R—2))? =1-2(R—2) = 5—2R. Hence yp = (3—2R)(ze?) =
5re?® — 2D (we?*) = xe?® — 2¢%* is a solution of the given differential equation.

(d) Since (D — 2)*(y —yp) = (D —2)%y — (D — 2)?yp = 0 we have y — yp € Span(e?®,ze?*) so that
y =yp + Ae®® + Bxe?®
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We have

1 1 1 0
W1:Null(A—I):Span<X1: _11 , Xo = (1) ),WQ:Null(A—i—I):Span(Xg: _01 , Xy = (1) >

and BX1 = X1 +4X2, BXQ = 2X2 + 3X27BX3 == 2X3 +X4, BX4 = X3 + 2X4 If T(X) = BX and Rl, RQ are
the restrictions of T' to W7 and W5 we have
1 2 1 2
C=[Ri]x,x,) = {4 3] , D= [Ra](xy,x,) = [2 1] .

Now me(z) = 22 —4x — 5 = (v = 5)(z + 1), mp(x) = 22 — 22 — 3 = (z — 3)(x + 1) so that C and D are
diagonalizable. Since

Null(C' — 51) = Span( H ), Null(C +I) = Span( [_ﬂ ), Null(D — 31) = Span( H ), Null(C +I) = Span( {_11])

we see that
3 0 1 1
3 0 1 -1
Pr=oi+2=| ||, =Xi-X=| ||, B=X+Xa=| ||, ii=X3-Xa=
-2 1 -1 1

are eigenvectors of B with eigenvalues 5, —1,3, —1 respectively. Since they are also eigenvectors of A with
eigenvalues 1,1, —1, —1 respectively, we see that the matrix P whose columns are Py, P53, P53, P, is an invertible
matrix which diagonalizes both A and B.

(a) If u € Ker(p(S)) then p(S)(u) = 0 which implies p(S)T'(u) = T'p(S)(u) = 0 so that T(u) € Ker(p(S)).
If u € Im(p(S)) then u = p(S)(v) for some v and T'(u) = Tp(S)(v) = p(S)T(v) € Im(p(S).

(b) Let R be the restriction of T' to W. Since W is T-invariant, R is a linear operator on W. Since mr(R) =0
we have mg(z) | mr(x). But T diagonalizable implies that my(z) is a product of distinct linear factors
and hence the same is true of mp(z). Thus R is diagonalizable.

(c) Since S is diagonalizable V is the direct sum of the eigenspaces of S. Since T' commutes with S each of
the eigenspaces of S are T-invariant. Hence, using (b), we see that T is diagonalizable if and only if the
restriction of T" to each eigenspace of S is diagonalizable.

(a) Let Wy = Ker((L — a)*) = Span((a"~1), (na"1),..., (n*"1a""1)). Then (L — a)(W},) C Wj._; since
(L - (a1 = (0 + 1" — wam) = (3 egndan) € Wiy

j<i
for i > 1. It follows that (L — a)*(W}) € Wy = {0}. Hence W}, C Ker(L — a)* and we must have equality
since dimKer(L — a)* = k = dim W}, since (a" 1), (na"1),...,(n*"1a""!) is a linearly independent
sequence. Indeed, Aja" ! 4 Ayna™ ' + ...+ ApnF~ a1 = 0 for all n > 1 if and only if A; + Ayn +
...+ ApnF~1 =0 for all n > 1 which implies 41 = --- = A} = 0 since otherwise A; + Aoz + - - - + Apz®~!
would be a polynomial of degree < k — 1 with more than k& — 1 roots.
(b) (L —1)(s) = ((n+1)23"+1) =9(n23"~1 +18(n3"~ 1) +9(3" 1) € Ker(L — 3)®> =

s € Ker(L—1)%(L—1)) = Span((1), (3"71), (n3"1), (n?3"7 1)) = s, = A+B3" 14+ Cn3"~ 1+ Dn?3"~!
for unique scalars A, B,C, D. Using the fact that s; = 3,59 = 39,53 = 282,54 = 1578 we get A =
~3/2,B=9/2,C = —9/2,D =9/2.

-2 1
dx _ . _
We have % = AX with A = [ 1 o9

] and ma(z) = 2° + 4o +3 = (z 4+ 1)(z + 3), Null(A + 1) = [_11]
Null(A + 31) = P

1
dd% = 3y, andsoy; = Ae™®, y, = Be 3. Hence x; = y1+y2 = Ae *+Be 3%, 29 = y; —yo = Ae~®— Be 2%,

:|. Setting X = PY with P = |:11 }:| we get % = P 'APY from which dstl = —y,



