
Math 247: Honours Applied Linear Algebra
Solutions to Assignment 4

1. (a) A2 − (a + d)A + (ad− bc)I =
[
a2 + bc− (a + d)a + ad− bc ab + bd− (a + d)b

ac + cd− (a + d)c bc + d2 − (a + d)d + ad− bc

]
=

[
0 0
0 0

]
.

(b) If m(x) = x2 − (a + d)x + (ad− bc) we have m(A) = 0 by (a) and so the minimal polynomial mA(x) of A
divides m(x). Since A is not a scalar multiple of the identity matrix the degree of mA(x) is not 1 and so
mA(x) = m(x) since both polynomials are monic and of the same degree.

(c) If mA(x) = (x − λ)2 we have A − λI 6= 0 which implies the existence of a column matrix P2 with
P1 = (A−λI)P2 6= 0.Then AP1 = λP1, AP2 = P1 +λP1. If P is the matrix whose columns are P1, P2 then

P is invertible since P2 is not a scalar multiple of P1 and P−1AP =
[
λ 1
0 λ

]
= B since B is the matrix

of the linear operator TA on F2×1 defined by TA(X) = AX with respect to the basis P1, P2. Conversely
if P−1AP = B then B is the matrix of TA with respect to the basis formed by the columns of P so that
the minimal polynomial of TA is equal to mB(x) = (x− λ)2.

2. We are given that xn+1 = xn/2+yn/3, yn+1 = xn/2+2yn/3 which proves the assertion. It follows by induction
that [

xn

yn

]
=

[
1
2

1
3

1
2

2
3

]n−1 [
1/2
1/2

]
.

The minimal polynomial of A =
[

1
2

1
3

1
2

2
3

]
is x2− (7/6)x+1/6 = (x−1)(x−1/6) so that the eigenvalues of A are

1 and 1/6. Since Null(A− 1) = Span(
[
2
3

]
and Null(A− (1/6)I) = Span(

[
1
−1

]
we see that P−1AP =

[
1 0
0 1/6

]

where P =
[
2 1
3 −1

]
. Hence A = P

[
1 0
0 1/6

]
P−1 so that An = P

[
1 0
0 1/6

]n

P−1 = P

[
1 0
0 1/6n

]
P−1. Hence

limn→∞An = P

[
1 0
0 1/6

]n

P−1 = P

[
1 0
0 0

]
P−1 =

[
2
5

2
5

3
5

3
5

]
so that limn→∞

[
xn

yn

]
=

[
2
5

2
5

3
5

3
5

] [
1/2
1/2

]
=

[
2/5
3/5

]
.

3. Since mA(x) = x2−(a+d)x+ad−bc we have mA(1) = 1−(a+d)+ad−bc = 1−(a+1−b)+a(1−b)−b(1−a) = 0.
Hence mA(x) = (x − 1)(x − r). Since a + d = 1 + r and 0 < a + d < 2 we have −1 < r < 1. Since mA(x)
is a product of distinct linear factors there is an invertible matrix P such that P−1AP is a diagonal matrix
with diagonal entries 1, r. It follows as above that B = limn→∞An exists. Since AB = B the columns of B
are eigenvectors of A with eigenvalue 1. Also, since the product of stochastic matrices is stochastic, it follows

that B is stochastic. Hence, if
[
α
β

]
is the first column of B it is an eigenvector of A with X = α + β = 1. The

second column of B must be cX for some scalar c since dim Null(A− I) = 1. Now cα + cβ = 1 implies c = 1.

4. (a) We have (1 + T + T 2 + · · ·+ Tn−1)(1− T ) = (1− T )(1 + T + T 2 + · · ·+ Tn−1) =
1 + T + T 2 + · · ·+ Tn−1 − (T + T 2 + · · ·+ Tn) = Tn = 0.

(b) Since (T − b) = (T − a + a − b) = (a − b)(1 − S) with S = (T − a)/(b − a). Since Sn = 0 we see by (a)
that 1− S is invertible and hence T − b is invertible with (T − b)−1 = (a− b)−1(1 + S + . . . + Sn−1).

(c) Since W = Null(D − 2)2 = Span(e2xxe2x) is D-invariant we can restrict D to W to get a linear operator
R on W with (R− 2)2 = 0. By (b) the operator R− 1 is invertible with (R− 1)−1 = 1− (R− 2). Hence
(R−1)2 is invertible with (R−1)2 = (1− (R−2))2 = 1−2(R−2) = 5−2R. Hence yP = (3−2R)(xe2) =
5xe2x − 2D(xe2x) = xe2x − 2e2x is a solution of the given differential equation.

(d) Since (D − 2)2(y − yP ) = (D − 2)2y − (D − 2)2yP = 0 we have y − yP ∈ Span(e2x, xe2x) so that
y = yP + Ae2x + Bxe2x.



5. We have

W1 = Null(A−I) = Span
(

X1 =




1
1
−1
0


 , X2 =




1
1
0
−1




)
, W2 = Null(A+I) = Span

(
X3 =




1
0
−1
0


 , X4 =




0
1
0
−1




)

and BX1 = X1 + 4X2, BX2 = 2X2 + 3X2, BX3 = 2X3 + X4, BX4 = X3 + 2X4. If T(X) = BX and R1, R2 are
the restrictions of T to W1 and W2 we have

C = [R1](X1,X2) =
[
1 2
4 3

]
, D = [R2](X3,X4) =

[
1 2
2 1

]
.

Now mC(x) = x2 − 4x − 5 = (x − 5)(x + 1), mD(x) = x2 − 2x − 3 = (x − 3)(x + 1) so that C and D are
diagonalizable. Since

Null(C−5I) = Span(
[
1
2

]
), Null(C +I) = Span(

[
1
−1

]
), Null(D−3I) = Span(

[
1
1

]
), Null(C +I) = Span(

[
1
−1

]
)

we see that

P1 = x1 + 2x2 =




3
3
−1
−2


 , P2 = X1 −X2 =




0
0
−1
1


 , P3 = X3 + X4 =




1
1
−1
−1


 , P4 = X3 −X4 =




1
−1
−1
1




are eigenvectors of B with eigenvalues 5,−1, 3,−1 respectively. Since they are also eigenvectors of A with
eigenvalues 1, 1,−1,−1 respectively, we see that the matrix P whose columns are P1, P3, P3, P4 is an invertible
matrix which diagonalizes both A and B.

6. (a) If u ∈ Ker(p(S)) then p(S)(u) = 0 which implies p(S)T (u) = Tp(S)(u) = 0 so that T (u) ∈ Ker(p(S)).
If u ∈ Im(p(S)) then u = p(S)(v) for some v and T (u) = Tp(S)(v) = p(S)T (v) ∈ Im(p(S).

(b) Let R be the restriction of T to W . Since W is T -invariant, R is a linear operator on W . Since mT (R) = 0
we have mR(x) | mT (x). But T diagonalizable implies that mT (x) is a product of distinct linear factors
and hence the same is true of mR(x). Thus R is diagonalizable.

(c) Since S is diagonalizable V is the direct sum of the eigenspaces of S. Since T commutes with S each of
the eigenspaces of S are T -invariant. Hence, using (b), we see that T is diagonalizable if and only if the
restriction of T to each eigenspace of S is diagonalizable.

7. (a) Let Wk = Ker((L− a)k) = Span((an−1), (nan−1), . . . , (nk−1an−1)). Then (L− a)(Wk) ⊆ Wk−1 since

(L− 1)((ni−1an−1)) = (((n + 1)i−1an − ni−1an) = (
∑

j<i

cjn
jan) ∈ Wi−1

for i ≥ 1. It follows that (L− a)k(Wk) ⊆ W0 = {0}. Hence Wk ⊆ Ker(L− a)k and we must have equality
since dim Ker(L − a)k = k = dim Wk since (an−1), (nan−1), . . . , (nk−1an−1) is a linearly independent
sequence. Indeed, A1a

n−1 + A2nan−1 + . . . + Aknk−1an−1 = 0 for all n ≥ 1 if and only if A1 + A2n +
. . . + Aknk−1 = 0 for all n ≥ 1 which implies A1 = · · · = Ak = 0 since otherwise A1 + A2x + · · ·+ Akxk−1

would be a polynomial of degree ≤ k − 1 with more than k − 1 roots.
(b) (L− 1)(s) = ((n + 1)23n+1) = 9(n23n−1 + 18(n3n−1) + 9(3n−1) ∈ Ker(L− 3)3 =⇒

s ∈ Ker(L−1)2(L−1)) = Span((1), (3n−1), (n3n−1), (n23n−1)) =⇒ sn = A+B3n−1+Cn3n−1+Dn23n−1

for unique scalars A,B, C, D. Using the fact that s1 = 3, s2 = 39, s3 = 282, s4 = 1578 we get A =
−3/2, B = 9/2, C = −9/2, D = 9/2.

8. We have dX
dt = AX with A =

[−2 1
1 −2

]
and mA(x) = x2 + 4x + 3 = (x + 1)(x + 3), Null(A + I) =

[
1
−1

]
,

Null(A + 3I) =
[
1
1

]
. Setting X = PY with P =

[
1 1
−1 1

]
we get dY

dt = P−1APY from which dy1
dt = −y1,

dy2
dt = −3y2 and so y1 = Ae−x, y2 = Be−3x. Hence x1 = y1+y2 = Ae−x+Be−3x, x2 = y1−y2 = Ae−x−Be−2x.


