McGill University MATH 247 Midterm Test

Justify All Your Assertions Determinants not allowed

1. Determine which of the following subsets S of the given real vector space V are subspaces of V.

(a)
$$V = \mathbb{R}^{\infty}, S = \{x = (x_1, x_2, \dots, x_n, \dots) \in V \mid x_{n+2} = x_n x_{n+1} \text{ for } n \ge 1\}.$$

(b) $V = \mathbb{R}^{2 \times 2}, S = \{X \in V \mid X \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} X\}.$

- 2. Determine whether the following sequences are linearly independent or linearly dependent.
 - (a) $(e^x, e^{2x}, e^{3x}, e^{4x})$ in $\mathbb{R}^{\mathbb{R}}$. (b) (A, A^2, A^3, A^4, A^5) where $A = \begin{bmatrix} 11 & 12\\ 13 & 14 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.
- 3. Let V be the real vector space of polynomial functions $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ where $a_0, a_1, a_2, a_3 \in \mathbb{R}$ and let $T: V \to V$ be the mapping defined by

$$T(f)(x) = f(x) + f(-x).$$

- (a) Prove that T is linear.
- (b) Find bases for the kernel and image of T.

4. Let
$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

- (a) Find a basis for $\mathbb{R}^{4\times 1}$ consisting of eigenvectors of A. Hint: $(A I)^2 = 4(A I)$.
- (b) Find an invertible matrix $P \in \mathbb{R}^{4 \times 4}$ such that $P^{-1}AP$ is a diagonal matrix.