McGill University

Math 247: Honours Applied Linear Algebra Assignment 3: due Wednesday, February 15, 2006

Midterm Test: Friday, March 3 (in class).

1. (a) If D is the differentiation operator on $V = C_{\mathbb{R}}^{\infty}(\mathbb{R})$ and $a \in \mathbb{R}$, prove that

$$Ker((D-a)^n) = Span(e^{ax}, xe^{ax}, \dots, x^{n-1}e^{ax}).$$

- (b) If W is the solution space of the differential equation $f^{iv}(x) 2f''(x) + f(x) = 0$, show that $W = \text{Ker}((D-1)^2) \oplus \text{Ker}((D+1)^2)$.
- (c) Find the solution of the differential equation in (b) satisfying

$$f(0) = 1$$
, $f'(0) = 2$, $f''(0) = 3$, $f'''(0) = 4$.

- 2. Let T be the linear operator on $V = \mathbb{R}^{2 \times 2}$ defined by $T(A) = 2A + A^t$, where A^t is the transpose of A.
 - (a) Find bases for the kernel and image of T.
 - (b) Show that $T^2 4T + 3 = 0$ and use this to find the eigenvalues of T.
 - (c) Find a basis of V consisting of eigenvectors of T.
- 3. (a) Find a 4×4 real matrix A such that

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

Show that A is unique.

- (b) If A is the matrix in (a), find the eigenvalues of A and a basis for each eigenspace of A.
- 4. (a) Find a 4×4 real matrix A whose null space and column space are spanned by the column matrices

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}.$$

(b) What are the eigenvalues of the matrix A found in (a)? Does $\mathbb{R}^{4\times 1}$ have a basis consisting of eigenvectors of A?

5. Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 1 & 2 & 2 \\ 0 & -2 & -1 & -2 \\ -2 & 0 & -2 & -1 \end{bmatrix}$$
.

- (a) Using the fact that $A^2 = I$, find the eigenvalues of A and a basis for each eigenspace of A.
- (b) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.