Math 247B: Linear Algebra Solutions for Midterm Test

1. (a) The mapping $T: V \in V$ defined by $T(f)(x) = f(x^2)$ is linear since

$$T(af + bg)(x) = (af + bg)(x^2) = af(x^2) + bg(x^2) = (aT(f) + bT(g))(x).$$

Then $W_1 = \text{Ker}(I_V - T)$ which is a subspace of V since $I_V - T$ is linear and the kernel of a linear mapping is linear.

- (b) The constant function f(x) = 1 $(x \in \mathbb{R})$ is in W_2 but $g = 2f \notin W_2$ since g(x) = 2 while $g(x)^2 = 4$.
- 2. (a) The sequence of vectors v_1, v_2, \ldots, v_n is linearly independent if $a_1v + a_2v_2 + \cdots + a_nv_n = 0$ implies that the scalars a_1, a_2, \ldots, a_n are all zero; they are linearly independent if there are scalars a_1, a_2, \ldots, a_n not all zero with $a_1v + a_2v_2 + \cdots + a_nv_n = 0$.
 - (b) Since $D(e^{ax}) = ae^{ax}$ the given functions are eigenvectors of the differention operator with distinct eigenvalues and hence are linearly independent.
 - (c) The 5 given matrices are linearly independent since they lie in the 4-dimensional vector space $F^{2\times 2}$, where F is the field of scalars. Theorem: Any m vectors in an n-dimensional vector space are linearly dependent if m > n.
- 3. (a) The mapping T is linear since

$$T(aX+bY) = A(aX+bY) - (aX+bY)A = a(AX-XA) + b(AY-YA) = aT(X) + bT(Y).$$

- (b) If $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $T(X) = \begin{bmatrix} 3(c+b) & 3(d-a) \\ 3(d-a) & -3(b+c) \end{bmatrix}$. Hence T(X) = 0 iff b = -c and a = d which implies that I, A is a basis for Ker(T). Since dim(Im(T)) = $4 \dim(\text{Ker}(T)) = 2$ and $T(X) = 3(b+c) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + 3(d-a) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ we see that $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is a basis for the image of T.
- (c) If T is a linear operator on a finite dimensional vector space V we have $\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T))$.