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1. The characteristic polynomial of A is λ4. We have
1 −1 0 0
1 −1 0 0
1 1 1 1
1 1 −1 −1

 , A2 =


0 0 0 0
0 0 0 0
4 0 0 0
0 −4 0 0

 , A3 =


0 0 0 0
0 0 0 0
4 −4 0 0
−4 4 0 0

 , A4 = 0

so that, if Null(A) denotes the null space of A, we have

Null(A) = Rf1, Null(A2) = Rf1 ⊕ Rf2, Null(A3) = Rf1 ⊕ Rf2 ⊕ Rf3, R
4×1 = Null(A4) = Rf1 ⊕ Rf2 ⊕ Rf3 ⊕ Rf4

f1 =


0
0
1
−1

 , f2 =


0
0
0
1

 , f3 =


1
1
0
0

 , f4 =


1
0
0
0

 .
Since Af1 = 0, Af2 = f1, Af3 = 2f1 + 3f2, Af4 = 2f1 + 3f2 + f3, the required matrix P is the matrix with columns
f1, f2, f3, f4. We then have

P =


0 0 1 1
0 0 −1 0
1 0 0 0
−1 1 0 0

 , P−1AP =


0 1 2 2
0 0 3 3
0 0 0 1
0 0 0 0

 .
Note that if P is the matrix with columns A3f4, A

2f4, Af4, f4, we have

P =


0 0 1 1
0 0 1 0
4 4 1 0
−4 0 1 0

 , P−1AP =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
2. The characteristic polynomial of A is λ2(λ− 2)2. We have

A =


3 −1 1 1
1 1 1 2
0 0 1 1
0 0 −1 −1

 , A2 =


8 −4 2 1
4 0 1 2
0 0 0 0
0 0 0 0

 , A3 =


20 −12 5 1
12 −4 3 3
0 0 0 0
0 0 0 0

 ,

Null(A) = Rf1, Null(A2) = Null(A3) = Rf1 ⊕ Rf2, f1 =


−1/4
−3/4
−1
1

 , f2 =


1/4
0
−1
0

 ,

A− 2I =


1 −1 1 1
1 −1 1 2
0 0 −1 1
0 0 −1 −3

 , (A− 2I)2 =


0 0 −2 −3
0 0 −3 −6
0 0 0 −4
0 0 4 8

 , (A− 2)3 =


20 −12 5 1
12 −4 3 3
0 0 0 0
0 0 0 0

 ,

Null(A− 2I) = Rf3, Null((A− I)2) = Null((A− I)3) = Rf3 ⊕ Rf4, f3 =


1
1
0
0

 , f4 =


1
0
0
0

 .



Since Af1 = 0, Af2 = f1, Af3 = 2f3, Af4 = 2f4 +f3, the required matrix P is the matrix whose columns are f1, f2, f3, f4.
We then have

P =


−1/4 1/4 1 1
−3/4 0 1 0
−1 −1 0 0
1 0 0 0

 , P−1AP =


0 1 0 0
0 0 0 0
0 0 2 1
0 0 0 2

 .
3. An orthogonal basis for W is f1 = (1, 0, 0, 1), f2 = (0, 1, 1, 0) so that

PW (v) =
< v, f1 >

< f1, f1 >
f1 +

< v, f2 >

< f2, f2 >
f2 =

1
2

(1, 0, 0, 1) = (1/2, 0, 0, 1/2).

The distance from v to W is ||v − PW (v)|| = ||(−1/2, 0, 0, 1/2)| = 1/
√

2.

4. (a) If A =
[
2 1
1 2

]
we have

< T (X), Y > = Tr((AX−XA)tY) = Tr(XtAY −AXtY) = Tr(XtAY)− Tr(AXtY)

= Tr(XtAY)− Tr(XtYA) = Tr(XtAY −XtYA) =< X,T(Y) > .

Hence T is self-adjoint. This can also be shown by showing that the matrix of T with respect to the standard basis
is a symmetric matrix. This is due to the fact that the standard basis is orthonormal for the given inner product.
To prove the second asssertion, we have

T (
[
a b
c d

]
) =

[
c− b d− a
b− c a− d

]
, T 2(

[
a b
c d

]
) =

[
2(a− d) 2(b− c)
2(c− b) 2(d− a)

]
, T 3(

[
a b
c d

]
) = 4T (

[
a b
c d

]
).

(b) The possible eigenvalues of T are 0 and ±2.

Ker(T) = Span(
[
1 0
0 1

]
,

[
0 1
1 0

]
)

Ker(T− 2) = Span(
[
−1 1
−1 1

]
), ker(T + 2) = Span(

[
−1 −1
1 1

]
).

The required orthonormal basis is

1√
2

[
1 0
0 1

]
,

1√
2

[
0 1
1 0

]
,

1
2

[
−1 1
−1 1

]
,

1
2

[
−1 −1
1 1

]
.

5. (a)

< T (f), g >=
∫ 1

−1

d

dx
((1− x2)f ′(x))g(x)dx =

∫ 1

−1

(1− x2)f ′(x)g′(x) =< f, T (g) > .

(b) Since T (xk) = −k(k+ 1)xk + k(k− 1)xk−2 the subspace Wn is T -invariant. Moreover, the matrix of T with respect
to the basis 1, x, . . . , xk−1 is upper triangular with the k-th diagonal entry equal to −k(k+ 1). Since these diagonal
entries are the eigenvalues of the reatriction of T to W and they are distinct, it follows that the eigenspapces of the
restriction are one-dimensional. Hence there is, up to multiplication by a non-zero scalar, a unique polynomial fk
such that T (fk) = −k(k + 1)fk. Moreover, this polynomial must be of degree k.

(c) This follows by induction on n. For n = 0 we have p0 = 1 and T (p0) = 0. If the result is true for n < k we use the
fact that the orthogonal complement of Wk in Wk+1 is Rpk and the fact that it is T -invatriant.

(d) qn = (2n)!
n! x

n+ terms of lower degree and integration by parts shows that qn ∈ W⊥n . The result follows since pn is
monic.

(e) Using the above one finds

p0 = 1, p1 = x, p2 = x2 − 1
3
, p3 = x3 − 3

5
x, p4 = x4 − 6

7
x2 +

3
35

with corresponding eigenvalues 0,−2,−6,−12,−20.
(f) This has been shown above.


