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1. If X =
[
x
y

]
, A =

[
1 1
−5 −3

]
the system is dX

dt = AX whose solution is X = eAtX(0). The characteristic matrix of A is

λ2 + 2λ+ 2 which has the distinct complex roots −1 + i, −1− i with corresponding eigenvectors
[

1
−2 + i

]
,
[

1
−2− i

]
. We

then have

X(0) =
1− 3i

2

[
1

−2 + i

]
+

1 + 3i
2

[
1

−2− i

]
X(t) =

1− 3i
2

e(−1+i)t

[
1

−2 + i

]
+

1 + 3i
2

e(−1−i)t
[

1
−2− i

]
= e−t<((1− 3i)(cos t+ i sin t)

[
1

−2 + i

]
)

=
[
e−t cos t+ 3e−t sin t
e−t cos t− 7e−t sin t

]
.

2. We have (D − 1)(D − 2)2(y) = x2 so that D3(D − 1)(D − 2)2(y) = 0. Hence

y ∈ Ker(D3(D− 1)(D− 2)2) = Ker(D3)⊕Ker(D− 1)⊕Ker((D− 2)2)

= Span(1, x, x2)⊕ Span(ex)⊕ Span(e2x, xe2x)

= Span(1, x, x2, ex, e2x, xe2x).

Thus there are scalars A,B,C,D,E, F such that y = A+Bx+Cx2 +Dex +Ee2x +Fxe2x. Substituting this expression
for y in the original equation, we get

(D3 − 5D2 + 8D − 4)(y) = −4Cx2 + (16C − 4B)x+B − 4A− 10C

which is equal to x3 iff A = −11/8, B = −1, C = −1/4. Hence the solution of the given diiferential equation is

y = −11
8
− x− 1

4
x2 +Dex + Ee2x + Fxe2x

with D,E, F arbitrary constants.

3. We have sn+1− sn = ((n+ 2)(2n+1 + 3n+1 so that (L− 1)(s) = 4(2n) + 2(n2n) + 6(3n) + 3(n2n) ∈ Ker((L− 2)2(L− 3)2).
Hence

s ∈ Ker((L− 2)2(L− 3)2(L− 1)) = Ker(L− 1)⊕Ker(((L− 2)2)⊕Ker((L− 3)2)
= Span((1))⊕ Span((2n), (n2n))⊕ Span((3n), (n3n))
= Span((1), (2n), (n2n), (3n), (n3n)).

Hence there are scalars A,B,C,D,E such that s = A(1) + B(2n) + C(n2n) + D(3n) + E(n3n). Since this implies that
(L − 1)(s) = (B + 2C)(2n) + C(n2n) + (2D + 3E)(3n) + 2E(n3n) we obtain B + 2C = 4, C = 2, 2D + 3E = 6, 2E = 3.
Using A+B +D = 2, we getA = 5/4, B = 0, C = 2, D = 3/4, E = 3/2. Hence

sn =
5
4

+ n2n+1 +
1
4

3n+1 +
1
2
n3n+1.



4. If S, T are simultaneously diagonalizable we have ST = TS since there then is a basis for which the matrix representations
of T and S are both diagonal matrices.

To prove the converse let v ∈ Ker(T − a). Then T (v) = av so that ST (v) = aS(v). If ST = TS we then have
TS(v) = aS(v) so that S(v) ∈ Ker(T − a). Hence, if ST = TS, the eigenspaces of T are S-invariant. We now use
the fact that the restriction R of a diagonalizable operator S to an S-invariant subspace is also diagonalizable. Indeed,
since S is diagonalizable, its minimal polynomial mS(λ) is a product of distinct linear factors and mS(R) = 0 implies
mR(λ) | mS(λ) which in turn implies R diagonalizable since mR(λ) would be a product of distinct linear factors. Hence,
each eigenspace of T has a basis of eignvectors of R which are also eigenvectors of S. But these basis vectors are then
eigenvectors for both S and T . Since V is the direct sum of the eigenspaces of T we obtain a basis for V consisting of
vectors which are eigenvectors for both S and T .


