The Jordan Canonical Form: Part 1

Let V be a finite-dimensional vector space over a field K and let T be a linear operator on V'
which satisfies a polynomial identity of the form

(T — a1)"™ (T —ax)** - - (T — )™ =0

with a1, as, ..., a,, distinct scalars. Such an identity always exists if K = C. In this and the following
lecture we shall prove the following result

Theorem 1. There exists a basis of V such that the matriz of T is in block-diagonal form with
Jordan blocks. If a is an eigenvalue of T, t the sequence (to,t1,...,tn,...) with t; = dimker(T — a)*
and

(80,815 ey Sy oe) = —R(L — 1)2(t),

where R, L are the left and right-shift operators on R, then s; is the number of Jordan blocks of
size © with eigenvalue a.

By way of an example, Let T be the linear operator on F§ whose matrix with respect the standard
basis of F§ is
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T. We also have rank(T — 1) = 3,

It follows that (T'— 1)> = 0 and 1 is the only eigenvalue of
rank(T — 1)2 = 1, rank(T — 1)® = 0 so that
(

t; = dimker(T — 1) = 3, t; = dimker(T — 1)* = 5, t3 = dimker(T — 1) = 6.
Hence t is the sequence (0,3,5,6,6, ....,6,...). Now
(L—1)(t) = (3,2,1,0,0,...,0,...), (L—1)%(t)=(~1,-1,-1,0,0,...,0,...)

and so —R(L —1)2(t) = (0,1,1,1,0,0, ..., 0, ...) which, according to Theorem 1, implies that there is
one Jordan block of size 1, one of size 2 and one of size 3. Hence there is a basis of F§ such that the
matrix of T" with respect to this basis is
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If W is a T-invariant subspace of V' and f = (f1, fa,..., fn) is a basis of W, the matrix (with
respect to this basis) of the restriction of T' to W is the Jordan matrix J,,(a) iff
T(f1) = afr, T(f2) = afe + f1,.., T(fi) = afi+ fi—1,..., T(fn) = afn + fo1

or, equivalently,

(T'=a)(f1) =0, (T'=a)(f2) = fr,.. (T = a)(fi) = fim1, -, (T = a)(fn) = fr-1.
For such a basis we have f; = (T —a)"~%(f,) with f,, € Ker((T —a)") —Ker((T —a)*~1). Conversely,
if g € Ker((T — a)) — Ker((T — a)"~!) the sequence
g, (T = a)(g), (T —)(g), (T — )" (g)

is a basis for a T-invariant subspace of V' such that the matrix of this mapping with respect to the
basis

fi=(T=a)""g), fo=(T~a)"*(g),. (T —a)(g),g
is the Jordan matrix J,(a). The vector g is called a cyclic vector of cycle length n for the
eigenvalue a. Each Jordan block corresponds a cyclic vector. The subspace generated by a cyclic
vector g and its images under the powers of T is called the cyclic subspace generated by g.
We now illustrate how to find cyclic vectors that give a decomposition into a direct sum of cyclic
subspaces in the case of Example 1. We first find bases for ker(T — 1), ker(T — 1), ker(T — 1)3:
Ker(T — 1) = Span(ey,e3 + e4,e3 + e3 + e5 + €5),
Ker((T - ]‘)2) = Span(elv €2,€5,€3 + €4,€3 + 66)7
Ker((T — 1)%) = Span(ey, ez, 3, €4, €5, €6).
The next step is to complete the basis of Ker(T — 1)? to a basis of (T — 1)3. We find that g, = eg
completes the given basis of Ker((T —1)?) to a basis of Ker((T —1)3). Now (T —1)(eg) = ea+e3+eq4
is in the kernel of (7' — 1)? but not in the kernel of 7' — 1. Thus
€1, e3+e4, €2+ €3+ €5+ €6, €2+ €3+ ¢4

is linearly independent and we can complete this sequence to a basis of Ker((T — 1)?) with the
vector go = e5. Now (T — 1)%(g1) = e1,(T — 1)(g2) = e3 + e4 are in the kernel of T — 1 and are
linearly independent. We complete these two vectors to a basis of ker(T — 1) by means of the vector
gs = ea + e3 + e5 + eg. Now, the sequence of vectors

gr=-¢co, (T—1)(g1) =es+ez+es, (T—1)%(g1)= e,
g2=¢5, (T —1)(g2) =e3+eq, gs=e€2+e3+e5+eq
is linearly independent and the basis
fi=gs, fo=(T—=1)(g2), f3 =92, fa=(T—-1%q), fs=(T—-1(q1), fo =0

yields the above Jordan canonical form for T'. If vy, vs,...,v, € V and W is a subspace of V, we say

that the sequence v1, v, ..., v, is linearly independent mod W if
aiv1 +asvg + -+ apv, EW — a1 =ay=...=a, =0.

This is equivalent to saying the the images of the vectors v; in the quotient space V/W form a
linearly independent sequence. Similarly, we say that vy, vs, ..., v, generate V mod W if every v € V
can be written in the form v = ajv1 + asv, + - - - + anv, with w € W. This is equivalent to saying
that the images of the vectors v; in V/W span V/W.



Lemma 2. If Ker((T — a)!) = Ker((T — a)'*1) then Ker((T — a)*1) = Ker((T — a)i*2).

Proof. Let v € Ker((T — a)'*2). Then (T — a)(v) € Ker((T — a)'™!) = Ker((T — a)!) which implies
that (T — a)"*'(v) = (T — a)(T — a)(v) = 0 and hence that v € Ker((T — a)'*!). O

This lemma shows that, for an eigenvalue a of T, there is an integer p > 0 such that
O=to<t1 < <tp=tpr1=tproa="--,
where t; = dim(T — a)*.
Lemma 3. Ifi > 2 and v € Ker((T — a)') — Ker((T — a)'~!) then
(T — a)(v) € Ker((T —a)'™!) — ker((T — a)'—2).
Proof. If v € Ker((T — a)') and (T — a)(v) € Ker((T — a)i=2) then
(T —a) ' (v) = (T —a)"*(T — a)(v) =0

which implies that v € Ker((T — a)i=1). O

This Lemma is simply the assertion that the linear mapping

S;_1: Ker((T — a)')/Ker((T — a)'™!) — Ker((T —a)' ') /Ker((T — a)'~?)
defined by S;_;(v + Ker((T — a)i=!) = (T — a)(v) + Ker((T — a)=1) is injective. This yields the
following result:
Lemma 4. Ifi > 2 and vy, v, ..., v, € Ker(T —a)! is linearly independent mod Ker((T —a)=1) then
(T = a)(01), (T = a)(v), (T — a)(va) € Ker(T — a)'1)

is a linearly independent sequence mod Ker((T — a)i=2).

If r = (ro, 71,0y 74y ...) = (L — 1)(¢) then

r; = dim(Ker(T — a)'*!) — dim(Ker(T — a)') = dim(Ker((T — a)'™!) /Ker((T — a)}).
Lemma 2 shows that r is a decreasing sequence of natural numbers which are zero for ¢ > p, i.e,
TQ2>T1 =272 2> 2T =Tpy1 =Tpp2 = ... = 0.

Theorem 1 states that the number of Jordan blocks of size 1 > 1 is

—(ri —ri—1) = 1i—1 —1; = dim(Ker((T — a)") /Ker((T — a)'~ ') — dim(Ker((T — a)' ™) /Ker((T — a)"))



