
The Jordan Canonical Form: Part 1

Let V be a finite-dimensional vector space over a field K and let T be a linear operator on V
which satisfies a polynomial identity of the form

(T − a1)k1(T − a2)k2 · · · (T − am)km = 0

with a1, a2, . . . , am distinct scalars. Such an identity always exists if K = C. In this and the following
lecture we shall prove the following result

Theorem 1. There exists a basis of V such that the matrix of T is in block-diagonal form with
Jordan blocks. If a is an eigenvalue of T , t the sequence (t0, t1, ..., tn, ...) with ti = dimker(T − a)i

and
(s0, s1, ..., sn, ...) = −R(L− 1)2(t),

where R,L are the left and right-shift operators on R∞, then si is the number of Jordan blocks of
size i with eigenvalue a.

By way of an example, Let T be the linear operator on F6
2 whose matrix with respect the standard

basis of F6
2 is

A =




1 1 1 1 0 0
0 1 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1




.

We have

A− 1 =




0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0




, (A− 1)2 =




0 0 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (A− 1)3 = 0.

It follows that (T − 1)3 = 0 and 1 is the only eigenvalue of T . We also have rank(T − 1) = 3,
rank(T− 1)2 = 1, rank(T− 1)3 = 0 so that

t1 = dimker(T − 1) = 3, t2 = dimker(T − 1)2 = 5, t3 = dimker(T − 1)3 = 6.

Hence t is the sequence (0, 3, 5, 6, 6, ...., 6, ...). Now

(L− 1)(t) = (3, 2, 1, 0, 0, ..., 0, ...), (L− 1)2(t) = (−1,−1,−1, 0, 0, ..., 0, ...)

and so −R(L− 1)2(t) = (0, 1, 1, 1, 0, 0, ..., 0, ...) which, according to Theorem 1, implies that there is
one Jordan block of size 1, one of size 2 and one of size 3. Hence there is a basis of F6

2 such that the
matrix of T with respect to this basis is




1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1




.
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If W is a T -invariant subspace of V and f = (f1, f2, ..., fn) is a basis of W , the matrix (with
respect to this basis) of the restriction of T to W is the Jordan matrix Jn(a) iff

T (f1) = af1, T (f2) = af2 + f1, ..., T (fi) = afi + fi−1, ..., T (fn) = afn + fn−1

or, equivalently,

(T − a)(f1) = 0, (T − a)(f2) = f1, ..., (T − a)(fi) = fi−1, ..., (T − a)(fn) = fn−1.

For such a basis we have fi = (T −a)n−i(fn) with fn ∈ Ker((T−a)n)−Ker((T−a)n−1). Conversely,
if g ∈ Ker((T− a)n)−Ker((T− a)n−1) the sequence

g, (T − a)(g), (T − a)2(g), ...., (T − a)n−1(g)

is a basis for a T -invariant subspace of V such that the matrix of this mapping with respect to the
basis

f1 = (T − a)n−1(g), f2 = (T − a)n−2(g), ..., (T − a)(g), g

is the Jordan matrix Jn(a). The vector g is called a cyclic vector of cycle length n for the
eigenvalue a. Each Jordan block corresponds a cyclic vector. The subspace generated by a cyclic
vector g and its images under the powers of T is called the cyclic subspace generated by g.

We now illustrate how to find cyclic vectors that give a decomposition into a direct sum of cyclic
subspaces in the case of Example 1. We first find bases for ker(T − 1), ker(T − 1)2, ker(T − 1)3:

Ker(T− 1) = Span(e1, e3 + e4, e2 + e3 + e5 + e6),

Ker((T− 1)2) = Span(e1, e2, e5, e3 + e4, e3 + e6),

Ker((T− 1)3) = Span(e1, e2, e3, e4, e5, e6).

The next step is to complete the basis of Ker(T − 1)2 to a basis of (T − 1)3. We find that g1 = e6

completes the given basis of Ker((T−1)2) to a basis of Ker((T−1)3). Now (T −1)(e6) = e2 +e3 +e4

is in the kernel of (T − 1)2 but not in the kernel of T − 1. Thus

e1, e3 + e4, e2 + e3 + e5 + e6, e2 + e3 + e4

is linearly independent and we can complete this sequence to a basis of Ker((T − 1)2) with the
vector g2 = e5. Now (T − 1)2(g1) = e1,(T − 1)(g2) = e3 + e4 are in the kernel of T − 1 and are
linearly independent. We complete these two vectors to a basis of ker(T − 1) by means of the vector
g3 = e2 + e3 + e5 + e6. Now, the sequence of vectors

g1 = e6, (T − 1)(g1) = e2 + e3 + e4, (T − 1)2(g1) = e1,

g2 = e5, (T − 1)(g2) = e3 + e4, g3 = e2 + e3 + e5 + e6

is linearly independent and the basis

f1 = g3, f2 = (T − 1)(g2), f3 = g2, f4 = (T − 1)2(g1), f5 = (T − 1)(g1), f6 = g1

yields the above Jordan canonical form for T . If v1, v2, ..., vn ∈ V and W is a subspace of V , we say

that the sequence v1, v2, ..., vn is linearly independent mod W if

a1v1 + a2v2 + · · ·+ anvn ∈ W =⇒ a1 = a2 = ... = an = 0.

This is equivalent to saying the the images of the vectors vi in the quotient space V/W form a
linearly independent sequence. Similarly, we say that v1, v2, ..., vn generate V mod W if every v ∈ V
can be written in the form v = a1v1 + a2vn + · · ·+ anvn with w ∈ W . This is equivalent to saying
that the images of the vectors vi in V/W span V/W .
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Lemma 2. If Ker((T− a)i) = Ker((T− a)i+1) then Ker((T− a)i+1) = Ker((T− a)i+2).

Proof. Let v ∈ Ker((T− a)i+2). Then (T − a)(v) ∈ Ker((T− a)i+1) = Ker((T− a)i) which implies
that (T − a)i+1(v) = (T − a)i(T − a)(v) = 0 and hence that v ∈ Ker((T− a)i+1).

This lemma shows that, for an eigenvalue a of T , there is an integer p > 0 such that

0 = t0 < t1 < · · · < tp = tp+1 = tp+2 = · · · ,

where ti = dim(T − a)i.

Lemma 3. If i ≥ 2 and v ∈ Ker((T− a)i)−Ker((T− a)i−1) then

(T − a)(v) ∈ Ker((T− a)i−1)− ker((T− a)i−2).

Proof. If v ∈ Ker((T− a)i) and (T − a)(v) ∈ Ker((T− a)i−2) then

(T − a)i−1(v) = (T − a)i−2(T − a)(v) = 0

which implies that v ∈ Ker((T− a)i−1).

This Lemma is simply the assertion that the linear mapping

Si−1 : Ker((T− a)i)/Ker((T− a)i−1) → Ker((T− a)i−1)/Ker((T− a)i−2)

defined by Si−1(v + Ker((T − a)i−1) = (T − a)(v) + Ker((T − a)i−1) is injective. This yields the
following result:

Lemma 4. If i ≥ 2 and v1, v2, ..., vn ∈ Ker(T−a)i is linearly independent mod Ker((T−a)i−1) then

(T − a)(v1), (T − a)(v2), ..., (T − a)(vn) ∈ Ker((T− a)i−1)

is a linearly independent sequence mod Ker((T− a)i−2).

If r = (r0, r1, ..., ri, ...) = (L− 1)(t) then

ri = dim(Ker(T− a)i+1)− dim(Ker(T− a)i) = dim(Ker((T− a)i+1)/Ker((T− a)i).

Lemma 2 shows that r is a decreasing sequence of natural numbers which are zero for i > p, i.e,

r0 ≥ r1 ≥ r2 ≥ · · · ≥ rp = rp+1 = rp+2 = ... = 0.

Theorem 1 states that the number of Jordan blocks of size i ≥ 1 is

−(ri− ri−1) = ri−1− ri = dim(Ker((T− a)i)/Ker((T− a)i−1)−dim(Ker((T− a)i+1)/Ker((T− a)i))

3


