McGill University Math 247B: Linear Algebra Assignment 7: due Tuesday, April 11, 2000

1. If A is the matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix},$$

find an invertible matrix P such that $P^{-1}AP$ is upper triangular.

2. Repeat question 1 with

$$A = \begin{bmatrix} 3 & -1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{bmatrix}.$$

3. Find the orthogonal projection of $v = (0, 0, 0, 1) \in \mathbb{R}^4$ on the subspace

$$W = \{ (x_1, x_2, x_3, x_4) \mid x_1 - x_2 + x_3 - x_4 = x_1 - x_4 = 0 \}$$

Find the distance of v to W.

4. Let $V = \mathbb{R}^{2 \times 2}$ with the inner product $\langle X, Y \rangle = Tr(X^tY)$ and let T be the linear operator on V defined by

$$T(X) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} X - X \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

- (a) Show that T is self-adjoint and that $T^3 = 4T$;
- (b) Find an orthormal basis of V consisting of eigenvectors of T.
- 5. Let $V = C^{\infty}[-1, 1]$ with the inner product

$$< f,g> = \int_{-1}^1 f(x)g(x)dx$$

and let T be the linear operator of V defined by

$$T(f(x)) = (1 - x^2)f''(x) - 2xf'(x)).$$

- (a) Show that T is self-adjoint. Hint: Use the fact that $T(f(x)) = \frac{d}{dx}((1-x^2)f'(x))$;
- (b) Show that $W_n = \text{Span}(1, \mathbf{x}, \dots, \mathbf{x}^{n-1})$ is *T*-invariant;
- (c) If $p_0, p_1, \ldots, p_{n-1}$ are the functions obtained from $1, x, \ldots, x^{n-1}, \ldots$ by the Gram-Schmidt process, show that for $n \ge 0$ the polynomial p_n is an eigenfunction of T;
- (d) If $q_n = \frac{d^n}{dx^n}((x^2-1)^n)$, show that $p_n = \frac{n!}{(2n)!}q_n$. Hint: Show that $q_n \in W_{n+1}$ and $q_n \in W_n^{\perp}$.
- (e) Compute p_1, p_2, p_3, p_4 and their eigenvalues.
- (f) If $T(p_n) = \lambda_n p_n$, show that $\lambda_n = -n(n+1)$. Hint: Show that There is a unique non-zero polynomial of degree n that $T(p_n) = -n(n+1)p_n$.

The polynomial p_n is, up to a constant factor, the Legendre polynomial of degree n.