McGill University Math 247B: Linear Algebra Assignment 3: due Monday, February 14, 2000

- 1. Find bases for each of the subspaces U_i , $U_i + U_j$, $U_i \cap U_j$ in question 3 of assignment 2.
- 2. Construct a linear operator on \mathbb{R}^4 whose kernel and image are are spanned by the vectors (1, 0, 1, 0), (1, 1, 1, 1).
- 3. Let $V = C^{\infty}(\mathbb{R})$ and let $D = \frac{d}{dx}$ be the differentiation operator on V. If $g \in V$, let $M_g : V \to V$ be defined by $M_g(f)(x) = g(x)f(x)$.
 - (a) Show that M_g is a linear operator on V;
 - (b) If g(x) = x for all x, show that $DM_g M_g D = I$ where I is the identity operator on V;
 - (c) Show that M_g is bijective iff $g(x) \neq 0$ for all x, in which case, $M_q^{-1} = M_{1/g}$;
 - (d) If $g(x) = e^{ax}$ ($a \in \mathbb{R}$ fixed), show that $D a = M_g D M_g^{-1}$;
 - (e) Using (d), show that Ker((D a)(D b)) = Ker(D a) + Ker(D b) if $a \neq b$. What happens if a = b?
- 4. Let F be a field and let $p_0, p_1, \ldots p_k \in F^{\mathbb{N}}$ $(k \ge 1)$ and let

$$W = \{ x \in F^{\mathbb{N}} \mid p_0(n)x_{n+k} + p_1(n)x_{n+k-1} + \dots p_k(n)x_n = 0, \quad n \ge 0 \}.$$

- (a) Show that W is a subspace of $F^{\mathbb{N}}$;
- (b) Show that the mapping $T: W \to F^k$ defined by $T(x) = (x_0, x_1, \dots, x_{k-1})$ is an isomorphism of vector spaces if $p_0(n) \neq 0$ for all $n \in \mathbb{N}$. What happens if $p_0(n) = 0$ for some n?