McGill University Math 247B: Linear Algebra Assignment 2: due Friday, February 4, 2000

- 1. In each of the following decide whether or not W is a subspace of the vector space V over the field F.
 - (a) $V = F^{\mathbb{N}}, F = \mathbb{F}_2, W = \{ (x_0, x_1, \dots, x_n, \dots) \in V \mid x_{n+3} = x_{n+2} + x_n \text{ for } n \ge 0 \};$
 - (b) $V = \mathbb{R}^{\mathbb{R}}, F = \mathbb{R}, W = \{ f \in V \mid f(x) = f(x^2) \text{ for all } x \in \mathbb{R} \};$
 - (c) $V = \mathbb{R}^{[0,1]}, F = \mathbb{R}, W = \{f \in V \mid f(0)f(1) = 0\};$
 - (d) $V = \mathbb{R}^3, F = \mathbb{R}, W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_1 x_2 + x_2^2 = 0\};$
 - (e) $V = F^{n \times n}$, $W = \{X \in V \mid X^t = -X\}$. (X^t is the transpose of X)
- 2. Let (1, 1, 0, 1, 1, 1), (1, 0, 1, 1, 1, 0), (1, 0, 0, 1, 1, 0), (1, 1, 1, 1, 1, 1) be vectors in \mathbb{F}_2^6 . Find a system of linear equations whose solution space is the subspace of \mathbb{F}_2^6 generated by the given vectors.
- 3. Let

$$U_1 = \{(x_1, ..., x_4) \in \mathbb{R}^4 : x_1 + 2x_2 + x_3 - x_4 = 0\}$$

$$U_2 = \{(x_1, ..., x_4) \in \mathbb{R}^4 : x_1 = x_2, x_3 = x_4\}$$

$$U_3 = \text{Span}(((1, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)))$$

$$U_4 = \text{Span}((1, 1, 0, 1), (1, 2, 2, 1)).$$

For each i, j with $1 \le i < j \le 4$, find a generating set for $U_i \cap U_j$ and $U_i + U_j$.

- 4. Let U, V be subspaces of a vector space W.
 - (a) Show that $U \cup V$ is a subspace of W if and only if $U \subseteq V$ or $V \subseteq U$.
 - (b) If $T: U \times V \to W$ is the mapping defined by T(u, v) = u + v, show that T is linear and find the kernel and image of T. Under what conditions is T an isomorphism?