McGill University Math 240: Discrete Structures 1 Solutions to Assignment 4

1. (a) The following table gives the computation of the gcd of a = 13422 and b = 10001. The second and fourth columns give (after the first 2 rows) the remainder r and quotient q after applying the division algorithm to the previous two entries in column 2. The entries of the third and fourth columns are then obtained by subtracting q times the previous entry from the entry before that one.

	i	r	m	n	q
	-1	13422	1	0	
_	0	10001	0	1	
_	1	3421	1	-1	1
_	2	3159	-2	3	2
	3	262	3	-4	1
_	4	15	-38	51	12
_	5	7	649	-871	17
	6	1	-1336	1793	2

Since $r_i = am_i + bn_i$, we have 1 = a(-1336) + b(1793).

- (b) Since 1 = (13422)(-1336) + (10001)(1793) we have gcd(a, b) = 1 since any divisor of a, b must divide 1.
- (c) From (b) we have $(10001)(1793) \equiv 1 \mod 13422$ so we can take c = 1793. Since c is the inverse of 10001 mod 13422 it is unique mod 13422.
- (d) Since $10001x \equiv 2341 \mod 13422$ and $(10001)(1793) \equiv 1 \mod 13422$ we have $x \equiv (2341)(1793) \equiv 9749 \mod 13422$.
- (e) Let x = 25(13422)(-1336) + 36(10001)(1793) = 197249748. Then $x \equiv 25 \mod 10001$ and $x \equiv 36 \mod 13422$ and is unique mod (13422)(10001) = 134233422. The smallest such x is 197249748 134233422 = 63233422.
- 2. We have 1 = (3)(5) + (-2)(7) so that the solution to the first two congruences is $x = (-2)(7)(2) + (3)(5)(3) \equiv 17 \mod 35$. Since 1 = (3)(12) + (-1)(35) we have $x = (17)(3)(12) + 4(-1)(35) = 472 \equiv 52 \mod 420$ as the solution of all three congruences.
- 3. (a) Using the Euclidean algorithm we find 43 as the inverse of 67 mod $\phi(91) = 72$. Then $b^{43} = a^{(67)(43)} = a^{1+72k} = a \cdot a^{72k} \equiv a \mod 91$ by Euler's Theorem. which says that $a^{\phi(n)} \equiv 1 \mod n$.
 - (b) By (a) $a \equiv 53^{43} \mod 91$. Now $43 = 32 + 8 + 2 + 1 \implies 53^{43} = (53)(53^2)(53^8)(53^{32}) \equiv (53)(79)(79)(79) \equiv 53 \mod 91$. So a = 53.
- 4. (a) Since $302 \equiv 2 \mod 4$, we have $3^{302} \equiv 3^2 \equiv 4 \mod 9$ by the Little Fermat Theorem. Similarly, $302 \equiv 2 \mod 6 \implies 3^{302} \equiv 3^2 \equiv 2 \mod 7$ and $302 \equiv 2 \mod 11 \implies 3^{302} \equiv 3^2 \equiv 9 \mod 11$.
 - (b) Using the Chinese Remainder Theorem, we have $3^{302} \equiv 9 \mod 5, 7, 11 \implies 3^{302} \equiv 9 \mod (5)(7)(11) = 385$.