McGill University Math 240: Discrete Structures 1 Assignment 4: due Friday, November 11, 2005

Reading: Text 2.4: The Integers and Division, 2.5: The Integers and Algorithms, 2.6 Applications of Number Theory

Questions:

- 1. (a) Using the Euclidean Algorithm, find $m, n \in \mathbb{Z}$ such that 1 = 13422m + 10001n.
 - (b) Using (a), show that gcd(13422, 10001) = 1.
 - (c) Using (a), find $c \in \mathbb{N}$ with c < 13422 such that $10001c \equiv 1 \mod 13422$. Is c unique? Why?
 - (d) Using (c), find all solutions of the congruence $10001x \equiv 2341 \mod 13422$.
 - (e) Using (a), find all solutions of the system of congruences

$$x \equiv 25 \mod 10001$$
$$x \equiv 36 \mod 13422.$$

Find the smallest solution with x > 0.

2. Using the Chinese Remainder Theorem, find all solutions to the system of congruences

$$x \equiv 2 \mod 5$$

 $x \equiv 3 \mod 7$
 $x \equiv 4 \mod 12$.

- 3. Suppose that $b \equiv a^{67} \mod 91$ and that $\gcd(a, 91) = 1$.
 - (a) Find $k \in \mathbb{N}$ such that $b^k \equiv a \mod 91$.
 - (b) If b = 53 and 0 < a < 91, what is a?
- 4. (a) Use Fermat's Little Theorem to compute

$$3^{302} \mod 5$$
, $3^{302} \mod 7$, $3^{302} \mod 11$.

(b) Use your results from part (a) and the Chinese Remainder Theorem to compute

$$3^{302} \mod 385$$
.