McGill University Math 240: Discrete Structures 1 Assignment 2: due Wednesday, September 28, 2005

Reading: Text 1.8: Functions, 7.1: Relations, 7.5: Equivalence Relations.

Questions:

- 1. For a relation on a set A show that the properties of reflexivity, symmetry and transitivity are independent by finding
 - (a) a relation R on A which is reflexive and symmetric but not transitive;
 - (b) a relation R on A which is reflexive and transitive but not symmetric;
 - (c) a relation R on A which is symmetric and transitive but not reflexive.
- 2. Let $f: X \to Y$ be a mapping from the set X to the set Y.
 - (a) If A, B are subsets of X prove that if f is injective then $f(A \cap B) = f(A) \cap f(B)$ and f(A B) = f(A) f(B).
 - (b) If A, B are subsets of Y prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ and $f^{-1}(A B) = f^{-1}(A) f^{-1}(B)$.
- 3. Let X be a set and let 2^X denote the set of all functions f with domain X and range a subset of $2 = \{0, 1\}$. For any subset A of X let $\chi_A \in 2^X$ be defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

The function χ_A is called the characteristic function of the subset A. Show that the mapping $A \mapsto \chi_A$ of P(X) to 2^X is bijective.

- 4. Let $f: X \to Y$ and $g: Y \to Z$ be mappings. Show that
 - (a) $g \circ f: X \to Z$ injective $\implies f: X \to Y$ injective;
 - (b) $g \circ f: X \to Z$ surjective $\implies g: Y \to Z$ surjective;
 - (c) if Z=X and $g\circ f=1_X$ and $f\circ g=1_Y$ then $f:X\to Y$ and $g:Y\to X$ are bijective and $g=f^{-1}$ and $f=g^{-1}$.