1. (a) Since the row sums of A are 5 we have that 5 is an eigenvalue with eigenvector $[1, 1, 1, 1]^t$. Also, 3 is an eigenvalue since the rank of A - 3I is 2. Now

$$\operatorname{Null}(A-3I) = \operatorname{Span}\left(\begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\-1 \end{bmatrix} \right), \quad \operatorname{Null}(A-5I) = \operatorname{Span}\left(\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right)$$

so that W = Null(A - 3I) + Null(A - 5I) is 3-dimensional. The orthogonal complement W^{\perp} is spanned by $[1, -1, -1, 1]^t$ which is an eigenvector of A with eigenvalue 1. Hence

$$f_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}, f_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, f_3 = \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, f_4 = \frac{1}{2} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$$

is an orthonormal basis of V consisting of eigenvectors of A and $A = 3P_1 + 3P_2 + 5P_3 + P_4$ is spectral resolution of A with

$$P_{1} = f_{1}f_{1}^{t} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, P_{2} = f_{2}f_{2}^{t} = \begin{bmatrix} 1/2 & 0 & 0 & -1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{bmatrix},$$
$$P_{3} = f_{3}f_{3}^{t} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix}, P_{4} = f_{4}f_{4}^{t} = \begin{bmatrix} 1/4 & -1/4 & -1/4 & 1/4 \\ -1/4 & 1/4 & 1/4 & -1/4 \\ -1/4 & 1/4 & 1/4 & -1/4 \\ 1/4 & -1/4 & -1/4 \end{bmatrix}.$$

The spectral decomposition of A is $A = 3Q_1 + 5Q_2 + Q_3$ where $Q_1 = P_1 + P_2$, $Q_2 = P_3$, $Q_3 = P_4$.

(b) The solution is $X = e^{-itA}X(0)$ with $X(0) = [1, 1, 1, 1]^t$. By the spectral decomposition, we have $e^{-itA} = e^{-3it}Q_1 + e^{-5it}Q_2 + e^{-it}Q_3$ so that

$$X = \left(e^{-3it}Q_1 + e^{-5it}Q_2 + e^{-it}Q_3\right) \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = e^{-5it} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}.$$

- (c) We have $q(X) = X^A X = Y^t P^t A P Y$ if X = P Y. Choosing for P the orthogonal matrix whose columns are f_1, f_2, f_3, f_4 found in (a), we have $q(X) = 3y_1^2 + 3y_2^2 + 5y_3^2 + 5y_4^2$ with ||X|| = ||Y||. If ||X|| = 1 we have $1 \le q(X) \le 5$ with q(X) = 1 if and only if $X = \pm f_4$ and q(X) = 5 if and only if $X = \pm f_3$.
- 2. We have

 $(A - I)^4 = 0$ so that $\text{Null}(A - I) = \text{Span}(e_1, e_3 + e_4)$, $\text{Null}((A - I)^2) = \text{Span}(e_1, e_2, e_3 + e_4)$, $\text{Null}((A - I)^3) = \text{Span}(e_1, e_2, e_3, e_4)$, $\text{Null}((A - I)^4) = \mathbb{R}^{5 \times 1}$. Hence e_5 generates the cycle

$$f_1 = (A - I)^3 e_5 = -e_1, \ f_2 = (A - I)^2 e_5 = -e_1 + e_2, \ f_3 = (A - I)e_5 = e_1 + e_2 + e_3, f_4 = e_5$$

of length 4. Completing f_1 to a basis $f_1, f_5 = e_3 + e_4$ of Null(A - I), we obtain a cycle of length 1 generated by f_5 . If P is the matrix whose columns are f_1, f_2, f_3, f_4, f_5 we have

$$P = \begin{bmatrix} -1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad P^{-1}AP = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

which is the Jordan canonical form of A.

3. Since $A^2 = 4I$ and $A \neq \pm 2I$ the eigenvalues of A are ± 2 . We have

$$\operatorname{Null}(A-2I) = \operatorname{Span}\left(\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix} \right), \ \operatorname{Null}(A+2I) = \operatorname{Span}\left(\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \right).$$

Applying the Gram-Schmidt process to the basis for Null(A + 2I) we get

$$f_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \ f_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\-1\\2\\0 \end{bmatrix}, \ f_3 = \frac{1}{2\sqrt{3}} \begin{bmatrix} 1\\-1\\-1\\-1\\3 \end{bmatrix}$$

which, together with $f_4 = [-1/2, 1/2, 1/2]^t$, yields an orthonormal basis of $\mathbb{R}^{4\times 1}$ consisting of eigenvectors of A. The spectral decomposition of A is $A = -2Q_1 + 2Q_2$ where $Q_1 = f_1f_1^t + f_2f_2^t + f_3f_3^t$ and $Q_2 = f_3f_3^t$.

- 4. (a) The statement is false since $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ are symmetric while their product $AB = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ is not.
 - (b) If λ is an eigenvalue of T we have $\lambda^9 = \lambda^8$ which implies $\lambda = 0, 1$. Hence T is self-adjoint since the eigenvalues are real. Since $\lambda^2 = \lambda$ for any eigenvalue of T the spectral theorem implies that $T^2 = T$.
- 5. (a) If $T(v) = \lambda v$ with $\lambda \neq 0$ we have $v = T((1/\lambda)v)$ so that eigenvectors of T with non-zero eigenvalues are in the image of T. Since eigenvectors of T with distinct eigenvalues are linearly independent, the number of distinct non-zero eigenvalues of T is at most $n = \dim(V)$ and so the number of distinct eigenvalues of T is at most n + 1.
 - (b) If u, v are linearly independent and T(u) = au, T(v) = bv, T(u+v) = c(u+v) we have cu + cv = au + bv so that a = b = c. Since any basis of V is a basis of eigenvectors for T this implies that the eigenvalues of the basis vectors are all equal. Hence T(v) = cv for some scalar c independent of v.