- 1. (a) If $A = [a_{ij}], B = [b_{ij}]$ we have $T(A + B) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B)$ and $\operatorname{tr}(cA) = \sum_{i=1}^{n} c \, a_{ii} = c \sum_{i=1}^{n} a_{ii} = c \operatorname{tr}(A)$ for any scalar c. Also $\operatorname{tr}(AB) = \sum_{i,j=1}^{n} a_{ij} b_{ji} = \operatorname{tr}(BA)$.
 - (b) If E_{ij} is the $n \times n$ matrix with (i, j)-th entry 1 and all other entries equal to 0, we have $E_{ij}E_{jk} = E_{ik}$ and $E_{ij}E_{km} = 0$ if $j \neq k$. The kernel of the trace map has dimension $n^2 - 1$ with basis the matrices E_{ij} $(i \neq j)$, $E_{11} - E_{ii}$ $(i \neq 1)$. If $i \neq j$ we have $E_{ij} = E_{ii}E_{ij} - E_{ij}E_{ii}$ and we have $E_{11} - E_{ii} = E_{1i}E_{i1} - E_{i1}E_{1i}$ which shows that Ker(tr) is spanned by matrices of the form AB - BA. This shows that tr(A) = 0 implies $\phi(A) = 0$. If A is any $n \times n$ matrix we have $A = tr(A)E_{11} + C$ with tr(C) = 0 which implies $\phi(A) = c tr(A)$ with $c = \phi(E_{11})$ and hence $\phi = c tr$.
- 2. (a) For fixed (y_1, y_2) we have that $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 5x_2y_2$ is linear in (x_1, x_2) and $\langle (x_1, x_2), (y_1, y_2) \rangle = \langle (y_1, y_2), (x_1, x_2) \rangle$. Since $\langle (x_1, x_2), (x_1, x_2) \rangle = (x_1 + 2x_2)^2 + x_2^2$ we see that $\langle (x_1, x_2), (x_1, x_2) \rangle \ge 0$ with equality if and only if $(x_1, x_2) = (0, 0)$.
 - (b) For fixed (y_1, y_2) we have that $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 \bar{y}_1 + i x_1 \bar{y}_2 i x_2 \bar{y}_1 + 2x_2 \bar{y}_2$ is linear in (x_1, x_2) and $\langle (x_1, x_2), (y_1, y_2) \rangle = \overline{\langle (y_1, y_2), (x_1, x_2) \rangle}$. Since $\langle (x_1, x_2), (x_1, x_2) \rangle = |x_1 i x_2|^2 + |x_2|^2$ we see that $\langle (x_1, x_2), (x_1, x_2) \rangle \ge 0$ with equality if and only if $(x_1, x_2) = (0, 0)$.
- 3. (a) An orthonormal basis for $W = \text{Span}(1, x, x^2)$ is $f_1(x) = 1, f_2(x) = x \frac{1}{2}, f_3(x) = x^2 x + \frac{1}{6}$. We have $||f_1|| = 1, ||f_2|| = 1/2\sqrt{3}, ||f_3|| = 1/6\sqrt{5}$. The best approximation to $h(x) = \sin(\pi x)$ by a function in W is the orthogonal projection of h on W. This is the function $h(x) = \frac{\langle h, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 + \frac{\langle h, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2 + \frac{\langle h, f_3 \rangle}{\langle f_3, f_3 \rangle} f_3 = \frac{2}{\pi} + \frac{60(\pi^2 12)}{\pi^3} (x^2 x + \frac{1}{6}).$
 - (b) If $g = af_1 + bf_2 + cf_3$ then $f(1) = \langle f, g \rangle$ for all $f \in W$ gives $1 = f_1(1) = a, 1/2 = b/12, 1/6 = c/180$ so that a = 1, b = 6, c = 30. Hence $g(x) = 30x^2 24x + 3$.
- 4. (a) First note that $A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$ is self-adjoint. Then $\langle X, T(Y) \rangle = \operatorname{tr}(X(AY YA)^*) = \operatorname{tr}(X(AY^* Y^*A)) = \operatorname{tr}(XAY^*) \operatorname{tr}(XY^*A) = \operatorname{tr}(XAY^*) \operatorname{tr}(AXY^*) = \operatorname{tr}((AX XA)Y^*) = \langle T(X), Y \rangle.$
 - (b) If $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $T(X) = i \begin{bmatrix} b+c & d-a \\ d-a & -b-c \end{bmatrix} = i(b+c) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + i(d-a) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ which implies $\operatorname{Im}(T) = \operatorname{Span}(E = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, F = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$ and $\operatorname{Ker}(T) = \operatorname{Span}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$. The subspace $W = \operatorname{Im}(T)$ is *T*-invariant and T(E) = -2iF, T(F) = 2iE implies that the matrix of the restriction of *T* to *W* with respect to the basis *E*, *F* is the matrix $B = \begin{bmatrix} 0 & 2i \\ -2i & 0 \end{bmatrix}$. The minimal polynomial of *B* is x^2 - so that 2, -2 are the eigenvalues of *B*. Eigenvectors for these eigenvalues are $\begin{bmatrix} i \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$ respectively. Thus the matrices iE + F and E + iF are eigenvectors of *T* with eigenvalues 2, -2 respectively. It follows that the required orthonormal basis of eigenvectors of *T* is

$$F_1 = \frac{1}{2} \begin{bmatrix} i & 1\\ 1 & -i \end{bmatrix}, F_2 = \frac{1}{2} \begin{bmatrix} 1 & i\\ i & -1 \end{bmatrix}, F_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, F_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}.$$

(c) The matrix of T with respect to the basis $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, F_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is the matrix $A = \begin{bmatrix} 0 & i & i & 0 \\ -i & 0 & 0 & i \\ -i & 0 & 0 & i \\ 0 & -i & -i & 0 \end{bmatrix}$. The unitary matrix $U = \begin{bmatrix} i/2 & 1/2 & 1/\sqrt{2} & 0 \\ 1/2 & i/2 & 0 & 1/\sqrt{2} \\ 1/2 & i/2 & 0 & -1/\sqrt{2} \\ -i/2 & -1/2 & 1/\sqrt{2} & 0 \end{bmatrix}$

whose columns are the coordinate vectors of F_1, F_2, F_3, F_4 satisfies $U^{-1}AU = \text{diag}(2, -2, 0, 0)$, the diagonal matrix with entries 2, -2, 0, 0, since $T(F_1) = 2F_2, T(F_2) = -2F_2, T(F_3) = T(F_4) = 0$.