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McGill University
Solution Sheet for MATH 236 Assignment 3

(a) Since (D — a)(z*e®®) = D(zke®®) — axFes® = kaF~1le®® + axFes” — axke®™ = kxk~1e™ we have, by induction,
(D —a)¥(z*e®) = k!e?® which implies (D — a)**!(e? ) = 0 and hence that (D — a)"(z*e%*) = 0 for n > k. Hence
U = Span(e®, ... ,xk"1e?*) C Ker((D — a)"). Since dim(Ker((D — a)™)) = n we have equality if dim(U) = n. To
prove the latter we have to show that (e®® ,2¥~1e%) is linearly independent. If ag,...,a,_; are scalars with
ape®™ 4+ a12e® 4+ -+ ap_12" e = 0 for all x we have ag + a1z + - - - + ap—12" ! = 0 for all z. Differentiating
n times and setting x = 0 in the resulting equations, we get a; = 0 for all 4.
Second Solution. If P is the operator on V defined by P(f)(z) = e** f(x) we have (D—a)P = PD so that D—a =
P=1DP. Hence (D—a)® = PD"P~!. Tt follows that f € Ker((D—a)") if and only if P~1(f) € Ker(D™). Using the
fact that Ker(D™) = Span(1,x,...,x"" 1, we get f € Ker((D —a)") if and only if e f(z) € Span(1,x,...,x*1).

(b) We have f¥)(z)—2f"(x)+f(z) = 0if and only if f € Ker(D*—2D?+1) = Ker((D—1)?(D+1)? D Ker((D—a)?)+
Ker((D+1)?). Since dim(W) = 4 we have to show dim(Ker((D—a)?)+Ker((D+1)?)) = 4 in order to show equality.
Since Ker((D —a)?) +Ker((D +1)?) = Span(e*, xe*) + Span(e™*, xe ) = Span(e*, xe*, e, xe ™) we have to show
that (e, ze*, e~* xe~?) is linearly independent. But ae®+bxe*+ce *+dre™* = 0 for all x yields on differentiation
3 times the identities (a + b)e* + bze® + (—c+ d)e™* —dze " =0, (a + 2b)e® + bzre® + (¢ — 2d)e™* + dre ™ =0,
(a+3b)e* +bre” + (—c+3d)e™™ — dxe™® = 0 which gives on setting = 0 the equations a+c¢=0,a+b—c+d =
0,a+2b+c—2d =0,a+ 3b—c+ 3d = 0 which implies a = b = ¢ = d = 0 by Gaussian elimination. This also
shows that Ker((D — 1)?) N Ker((D + 1)?) = {0} and hence that W = Ker((D — 1)?) @ Ker((D + 1)?).

(¢) From (b) we have f(z) = ae®” + cxe® + ce ™ + dre™ ™. Hence f(0) = a+c=1, f/(0) =a+b—c+d = 2,
f7(0) =a+2b+c—2d =3, f(0) = a+3b—c+ 3d = 4 from which a = b =1, ¢ = d = 0 and hence
f(z) = e* 4 ze®.

(a) We have A € Ker(T) < 2A+ A'=0 < A' = —2A <= A =0 so that Ker(T') = {0} with basis the empty

list. Since T'is 1 — 1 is onto as dim(V') = 4 with basis (F O} {O 1} [(1) 0} , [O 0]) which is therefore also

0 0”0 of 0”10 1
a basis for Im(T).

(b) We have T?(A) = T(T(A)) = 4A + 2T (A)! = 4A + 2(2A + AY)? = 5A + 4A! so that T?(A) — 4T(A) + 34 =
5A + 4A! — 8A — 4A! + 3A = 0 which gives T? — 4T + 3 = 0. Hence, if ) is an eigenvalue of T', we must have

A2 — 4\ + 3 = 0 from which A = 1,3. Since T(A) = A <= A! = —A we see that A = [_01 (1)] is an eigenvector

of T with eigenvalue 1. Since T(A) = 34 <= A' = A we see that [(1) 8} is an eigenvector of T' with eigenvalue
3. Hence 1, 3 are the eigenvalues of T.
(c) We have V = Ker(T? —4T +3) = Ker((T'—1)(T—3)) = Ker(T'— 1) ®Ker(T —3) and Ker(7'—1) = Span(

Ker(T — 3) — Span([(l) 8}{‘1) (ﬂ[g ﬂ) which yields the basis ([_01 (1)]) [(1) 8} [O 1] { ]

consisting of eigenvectors of T'.

1
10)
of V

1 1 1 1
1 2 1 2 . 1

(a) Let F} = 1 By, = 1 ,Fy = 9 JEFy = 3 and let 1, Es, F3, E4 be the standard basis of R**!. Then
1 2 2 3

F1 = E1 —|—E2+E3+E4, FQ = E1+2E2+E3+2E4, F3 = E11—|—E2—|-2E3-i-2E’47 F4 = E1+2E2+3E3+3E4 SOIVng for
El,E27E37E4, we get E1 = Fl +F3*F4, E2 = F1 72F3+F47 E3 = F17F27F3+F4, E4 = 72F1 +F2+2F3*F4.
Hence the columns of A are AE, = Fy| — 4F3 — 2Fy, AEy = Fy — 4F3 + 2Fy, AE3 = F, — Fy, — 2F3 + 2F},

1 -1 0 1
AEy = —2F, + Fy 4+ 4F3 — 2F; which gives A = :1 _11 ; (1) . If B is a matrix with AF; = BF; for all i we
-1 -1 1 2

would have AFE; = BE; for all ¢« and hence A = B.

(b) Since A%2—3A+2I = (A—1I)(A—2I) = 0 we see that the eigenvalues A of A are roots of A> —3A+2 = 0 and hence
must be 1 or 2. Since Fi, F3 are eigenvectors of A with eigenvalues 1,2 respectively we see that the eigenvalues of
A are 1,2.



4.

(a)

Let F1 =

DN QO W~

, By = and complete Fy, Fy to a basis Fy, Fy, F3, Fy of R**! where F3 = E3,Fy; = E,. Then

=W N =

1

FEy = %Fl + %FQ + F3+2F,, Ey = %Fl — %FQ —2F3 —3Fy, E3 = F3, E4 = F,. Let T be the linear mapping of
R*>*Ydefined by T(y1 F1 +yoFo +y3F3+yaFy) = y3Fi +yaFs. Then Ker(T) = Im(7T') = Span(Fy, Fy). The required
matrix A is the matrix of T with respect to the usual basis of R**1. The columns of A are AE; = F| + 2F5,

9 —-14 1 4
8§ —-13 2 3 . . .
AFEy = —2F, — 3Fy, AE3 = Fy, AE, = F5 so that A = 7 _12 3 9l Note that the matrix A is not unique.
6 —11 4 1
Second Solution: If [, za, x3, 4] is a row of A we must have x; +2x5 + 323+ 4wy =0, 421+ 322+ 2234+ 24 =0
which, by Gaussian elimination, has the general solution xy = a + 2b,22 = —2a — 3b,x3 = a,x4 = b. Hence A
a; +2b; —2a; —3b; a1 b ai 1 by 4
. | a2 + 2b2 72(12 — 3b2 ag b2 . as _ 2 b2 o 3 . .
has the form A = a3 +2bs —2a3 —3bs as bs|’ Choosing as| = 3] 65| = |2|" we obtain the required
a4 + 2b4 —2(14 - 3b4 a4 b4 Q4 4 b4 1

matrix.

Since A% = 0 and the null space of A is Span(Fy,F3) we see that 0 is the only eigenvalue of A. Since the only
eigenvectors of A lie in the null space of A, a two dimensional subspace of R**!, we see that R**! does not have
a basis consisting of eigenvectors of A.

1 1
Since A% = 1 the possible eigenvalues of A are 1,—1. Now Null(A — I) = Span( _11 , é ) and Null(A +1) =
0 -1
0
Span( R (1) ) so that 1,—1 are the eigenvalues of A and a basis for each eigenspace is given above.
0 -1
1 1 1 0 10 0 O
. 1 1 0 1 . . 01 0 O . .
The matrix P = 10 -1 o0 satisfies AP = PD with D = 00 -1 0 The matrix P is
o -1 0 -1 00 0 -1

invertible since its columns are linearly independent. This follows from the fact that R**! = Null(A? — 1) =
Null((A —I)(A +1I)) = Null(A — I) & Null(A +I). Hence P~*AP = D.



