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1. (a) Since (D − a)(xkeax) = D(xkeax) − axkeax = kxk−1eax + axkeax − axkeax = kxk−1eax we have, by induction,
(D− a)k(xkeax) = k!eax which implies (D− a)k+1(eax) = 0 and hence that (D− a)n(xkeax) = 0 for n > k. Hence
U = Span(eax, . . . , xk−1eax) ⊆ Ker((D− a)n). Since dim(Ker((D − a)n)) = n we have equality if dim(U) = n. To
prove the latter we have to show that (eax, . . . , xk−1eax) is linearly independent. If a0, . . . , an−1 are scalars with
a0e

ax + a1xeax + · · ·+ an−1x
n−1eax = 0 for all x we have a0 + a1x + · · ·+ an−1x

n−1 = 0 for all x. Differentiating
n times and setting x = 0 in the resulting equations, we get ai = 0 for all i.
Second Solution. If P is the operator on V defined by P (f)(x) = eaxf(x) we have (D−a)P = PD so that D−a =
P−1DP . Hence (D−a)n = PDnP−1. It follows that f ∈ Ker((D−a)n) if and only if P−1(f) ∈ Ker(Dn). Using the
fact that Ker(Dn) = Span(1, x, . . . , xn−1, we get f ∈ Ker((D− a)n) if and only if e−axf(x) ∈ Span(1, x, . . . , xn−1).

(b) We have f (iv)(x)−2f ′′(x)+f(x) = 0 if and only if f ∈ Ker(D4−2D2+1) = Ker((D−1)2(D+1)2 ⊇ Ker((D−a)2)+
Ker((D+1)2). Since dim(W ) = 4 we have to show dim(Ker((D−a)2)+Ker((D+1)2)) = 4 in order to show equality.
Since Ker((D−a)2)+Ker((D+1)2) = Span(ex, xex)+Span(e−x, xe−x) = Span(ex, xex, e−x, xe−x) we have to show
that (ex, xex, e−x, xe−x) is linearly independent. But aex+bxex+ce−x+dxe−x = 0 for all x yields on differentiation
3 times the identities (a + b)ex + bxex + (−c + d)e−x − dxe−x = 0, (a + 2b)ex + bxex + (c− 2d)e−x + dxe−x = 0,
(a+3b)ex + bxex +(−c+3d)e−x− dxe−x = 0 which gives on setting x = 0 the equations a+ c = 0, a+ b− c+ d =
0, a + 2b + c − 2d = 0, a + 3b − c + 3d = 0 which implies a = b = c = d = 0 by Gaussian elimination. This also
shows that Ker((D − 1)2) ∩Ker((D + 1)2) = {0} and hence that W = Ker((D − 1)2)⊕Ker((D + 1)2).

(c) From (b) we have f(x) = aex + cxex + ce−x + dxe−x. Hence f(0) = a + c = 1, f ′(0) = a + b − c + d = 2,
f ′′(0) = a + 2b + c − 2d = 3, f ′′′(0) = a + 3b − c + 3d = 4 from which a = b = 1, c = d = 0 and hence
f(x) = ex + xex.

2. (a) We have A ∈ Ker(T ) ⇐⇒ 2A + At = 0 ⇐⇒ At = −2A ⇐⇒ A = 0 so that Ker(T ) = {0} with basis the empty

list. Since T is 1− 1 is onto as dim(V ) = 4 with basis
([

1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

])
which is therefore also

a basis for Im(T ).

(b) We have T 2(A) = T (T (A)) = 4A + 2T (A)t = 4A + 2(2A + At)t = 5A + 4At so that T 2(A) − 4T (A) + 3A =
5A + 4At − 8A − 4At + 3A = 0 which gives T 2 − 4T + 3 = 0. Hence, if λ is an eigenvalue of T , we must have

λ2 − 4λ + 3 = 0 from which λ = 1, 3. Since T (A) = A ⇐⇒ At = −A we see that A =
[

0 1
−1 0

]
is an eigenvector

of T with eigenvalue 1. Since T (A) = 3A ⇐⇒ At = A we see that
[
1 0
0 0

]
is an eigenvector of T with eigenvalue

3. Hence 1, 3 are the eigenvalues of T .

(c) We have V = Ker(T 2−4T +3) = Ker((T−1)(T−3)) = Ker(T −1)⊕Ker(T−3) and Ker(T−1) = Span(
[

0 1
−1 0

]
),

Ker(T − 3) = Span(
[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
) which yields the basis

([
0 1
−1 0

]
),

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

])
of V

consisting of eigenvectors of T .

3. (a) Let F1 =




1
1
1
1


 , F2 =




1
2
1
2


 , F3 =




1
1
2
2


 , F4 =




1
2
3
3


 and let E1, E2, E3, E4 be the standard basis of R4×1. Then

F1 = E1+E2+E3+E4, F2 = E1+2E2+E3+2E4, F3 = E1+E2+2E3+2E4, F4 = E1+2E2+3E3+3E4. Solving for
E1, E2, E3, E4, we get E1 = F1 +F3−F4, E2 = F1−2F3 +F4, E3 = F1−F2−F3 +F4, E4 = −2F1 +F2 +2F3−F4.
Hence the columns of A are AE1 = F1 − 4F3 − 2F4, AE2 = F1 − 4F3 + 2F4, AE3 = F1 − F2 − 2F3 + 2F4,

AE4 = −2F1 + F2 + 4F3 − 2F4 which gives A =




1 −1 0 1
−1 1 1 0
−1 −1 2 1
−1 −1 1 2


. If B is a matrix with AFi = BFi for all i we

would have AEi = BEi for all i and hence A = B.

(b) Since A2−3A+2I = (A−I)(A−2I) = 0 we see that the eigenvalues λ of A are roots of λ2−3λ+2 = 0 and hence
must be 1 or 2. Since F1, F3 are eigenvectors of A with eigenvalues 1, 2 respectively we see that the eigenvalues of
A are 1, 2.



4. (a) Let F1 =




1
2
3
4


, F2 =




4
3
2
1


 and complete F1, F2 to a basis F1, F2, F3, F4 of R4×1 where F3 = E3, F4 = E4. Then

E1 = 3
5F1 + 2

5F2 + F3 + 2F4, E2 = 4
5F1 − 1

5F2 − 2F3 − 3F4, E3 = F3, E4 = F4. Let T be the linear mapping of
R4×1defined by T (y1F1 +y2F2 +y3F3 +y4F4) = y3F1 +y4F2. Then Ker(T ) = Im(T ) = Span(F1, F2). The required
matrix A is the matrix of T with respect to the usual basis of R4×1. The columns of A are AE1 = F1 + 2F2,

AE2 = −2F1 − 3F2, AE3 = F1, AE4 = F2 so that A =




9 −14 1 4
8 −13 2 3
7 −12 3 2
6 −11 4 1


. Note that the matrix A is not unique.

Second Solution: If [x1, x2, x3, x4] is a row of A we must have x1 +2x2 +3x3 +4x4 = 0, 4x1 +3x2 +2x3 +x4 = 0
which, by Gaussian elimination, has the general solution x1 = a + 2b, x2 = −2a − 3b, x3 = a, x4 = b. Hence A

has the form A =




a1 + 2b1 −2a1 − 3b1 a1 b1

a2 + 2b2 −2a2 − 3b2 a2 b2

a3 + 2b3 −2a3 − 3b3 a3 b3

a4 + 2b4 −2a4 − 3b4 a4 b4


. Choosing




a1

a2

a3

a4


 =




1
2
3
4


,




b1

b2

b3

b4


 =




4
3
2
1


, we obtain the required

matrix.

(b) Since A2 = 0 and the null space of A is Span(F1, F2) we see that 0 is the only eigenvalue of A. Since the only
eigenvectors of A lie in the null space of A, a two dimensional subspace of R4×1, we see that R4×1 does not have
a basis consisting of eigenvectors of A.

5. (a) Since A2 = 1 the possible eigenvalues of A are 1,−1. Now Null(A− I) = Span(




1
1
−1
0


 ,




1
1
0
−1


) and Null(A + I) =

Span(




1
0
−1
0


 ,




0
1
0
−1


) so that 1,−1 are the eigenvalues of A and a basis for each eigenspace is given above.

(b) The matrix P =




1 1 1 0
1 1 0 1
−1 0 −1 0
0 −1 0 −1


 satisfies AP = PD with D =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


. The matrix P is

invertible since its columns are linearly independent. This follows from the fact that R4×1 = Null(A2 − 1) =
Null((A− I)(A + I)) = Null(A− I)⊕Null(A + I). Hence P−1AP = D.


