McGill University Solution Sheet for MATH 236 Assignment 3

1. (a) Since $(D-a)(x^k e^{ax}) = D(x^k e^{ax}) - ax^k e^{ax} = kx^{k-1}e^{ax} + ax^k e^{ax} - ax^k e^{ax} = kx^{k-1}e^{ax}$ we have, by induction, $(D-a)^k(x^k e^{ax}) = k!e^{ax}$ which implies $(D-a)^{k+1}(e^{ax}) = 0$ and hence that $(D-a)^n(x^k e^{ax}) = 0$ for n > k. Hence $U = \text{Span}(e^{ax}, \dots, x^{k-1}e^{ax}) \subseteq \text{Ker}((D-a)^n)$. Since dim $(\text{Ker}((D-a)^n)) = n$ we have equality if dim(U) = n. To prove the latter we have to show that $(e^{ax}, \ldots, x^{k-1}e^{ax})$ is linearly independent. If a_0, \ldots, a_{n-1} are scalars with $a_0e^{ax} + a_1xe^{ax} + \dots + a_{n-1}x^{n-1}e^{ax} = 0$ for all x we have $a_0 + a_1x + \dots + a_{n-1}x^{n-1} = 0$ for all x. Differentiating n times and setting x = 0 in the resulting equations, we get $a_i = 0$ for all i.

Second Solution. If P is the operator on V defined by $P(f)(x) = e^{ax} f(x)$ we have (D-a)P = PD so that D-a = PD $P^{-1}DP$. Hence $(D-a)^n = PD^nP^{-1}$. It follows that $f \in \operatorname{Ker}((D-a)^n)$ if and only if $P^{-1}(f) \in \operatorname{Ker}(D^n)$. Using the fact that $\operatorname{Ker}(D^n) = \operatorname{Span}(1, x, \dots, x^{n-1})$, we get $f \in \operatorname{Ker}((D-a)^n)$ if and only if $e^{-ax}f(x) \in \operatorname{Span}(1, x, \dots, x^{n-1})$.

- (b) We have $f^{(iv)}(x) 2f''(x) + f(x) = 0$ if and only if $f \in \text{Ker}(D^4 2D^2 + 1) = \text{Ker}((D-1)^2(D+1)^2 \supseteq \text{Ker}((D-a)^2) + 1)$ $\operatorname{Ker}((D+1)^2)$. Since $\dim(W) = 4$ we have to show $\dim(\operatorname{Ker}((D-a)^2) + \operatorname{Ker}((D+1)^2)) = 4$ in order to show equality. Since $\operatorname{Ker}((D-a)^2) + \operatorname{Ker}((D+1)^2) = \operatorname{Span}(e^x, xe^x) + \operatorname{Span}(e^{-x}, xe^{-x}) = \operatorname{Span}(e^x, xe^x, e^{-x}, xe^{-x})$ we have to show that $(e^x, xe^x, e^{-x}, xe^{-x})$ is linearly independent. But $ae^x + bxe^x + ce^{-x} + dxe^{-x} = 0$ for all x yields on differentiation 3 times the identities $(a+b)e^x + bxe^x + (-c+d)e^{-x} - dxe^{-x} = 0$, $(a+2b)e^x + bxe^x + (c-2d)e^{-x} + dxe^{-x} = 0$, $(a+3b)e^x + bxe^x + (-c+3d)e^{-x} - dxe^{-x} = 0$ which gives on setting x = 0 the equations a+c = 0, a+b-c+d = 00, a + 2b + c - 2d = 0, a + 3b - c + 3d = 0 which implies a = b = c = d = 0 by Gaussian elimination. This also shows that $\text{Ker}((D-1)^2) \cap \text{Ker}((D+1)^2) = \{0\}$ and hence that $W = \text{Ker}((D-1)^2) \oplus \text{Ker}((D+1)^2)$.
- (c) From (b) we have $f(x) = ae^x + cxe^x + ce^{-x} + dxe^{-x}$. Hence f(0) = a + c = 1, f'(0) = a + b c + d = 2, f''(0) = a + 2b + c - 2d = 3, f'''(0) = a + 3b - c + 3d = 4 from which a = b = 1, c = d = 0 and hence $f(x) = e^x + xe^x.$
- 2. (a) We have $A \in \text{Ker}(T) \iff 2A + A^t = 0 \iff A^t = -2A \iff A = 0$ so that $\text{Ker}(T) = \{0\}$ with basis the empty list. Since T is 1 1 is onto as $\dim(V) = 4$ with basis $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$ which is therefore also a basis for Im(T).
 - (b) We have $T^2(A) = T(T(A)) = 4A + 2T(A)^t = 4A + 2(2A + A^t)^t = 5A + 4A^t$ so that $T^2(A) 4T(A) + 3A = 4A + 2(2A + A^t)^t = 5A + 4A^t$ $5A + 4A^t - 8A - 4A^t + 3A = 0$ which gives $T^2 - 4T + 3 = 0$. Hence, if λ is an eigenvalue of T, we must have $\lambda^2 - 4\lambda + 3 = 0$ from which $\lambda = 1, 3$. Since $T(A) = A \iff A^t = -A$ we see that $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is an eigenvector of T with eigenvalue 1. Since $T(A) = 3A \iff A^t = A$ we see that $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is an eigenvector of T with eigenvalue 3. Hence 1.3 are the eigenvalues of T.
 - (c) We have $V = \operatorname{Ker}(T^2 4T + 3) = \operatorname{Ker}((T 1)(T 3)) = \operatorname{Ker}(T 1) \oplus \operatorname{Ker}(T 3)$ and $\operatorname{Ker}(T 1) = \operatorname{Span}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\operatorname{Ker}(T 3) = \operatorname{Span}\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$) which yields the basis $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$) of V consisting of simulations of V. consisting of eigenvectors of

3. (a) Let $F_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $F_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$, $F_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$, $F_4 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$ and let E_1, E_2, E_3, E_4 be the standard basis of $\mathbb{R}^{4 \times 1}$. Then $F_1 = E_1 + E_2 + E_3 + E_4$, $F_2 = E_1 + 2E_2 + E_3 + 2E_4$, $F_3 = E_1 + E_2 + 2E_3 + 2E_4$, $F_4 = E_1 + 2E_2 + 3E_3 + 3E_4$. Solving for $E_1, E_2, E_3, E_4, \text{ we get } E_1 = F_1 + F_3 - F_4, E_2 = F_1 - 2F_3 + F_4, E_3 = F_1 - F_2 - F_3 + F_4, E_4 = -2F_1 + F_2 + 2F_3 - F_4.$ Hence the columns of A are $AE_1 = F_1 - 4F_3 - 2F_4$, $AE_2 = F_1 - 4F_3 + 2F_4$, $AE_3 = F_1 - F_2 - 2F_3 + 2F_4$, Hence the columns of A are $AL_1 = I_1 - I_3$ L_4, III_2 I_1 $AE_4 = -2F_1 + F_2 + 4F_3 - 2F_4$ which gives $A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ -1 & -1 & 2 & 1 \\ -1 & -1 & 1 & 2 \end{bmatrix}$. If B is a matrix with $AF_i = BF_i$ for all i we

would have $AE_i = BE_i$ for all *i* and hence A =

(b) Since $A^2 - 3A + 2I = (A - I)(A - 2I) = 0$ we see that the eigenvalues λ of A are roots of $\lambda^2 - 3\lambda + 2 = 0$ and hence must be 1 or 2. Since F_1, F_3 are eigenvectors of A with eigenvalues 1, 2 respectively we see that the eigenvalues of A are 1, 2.

4. (a) Let $F_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $F_2 = \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$ and complete F_1, F_2 to a basis F_1, F_2, F_3, F_4 of $\mathbb{R}^{4 \times 1}$ where $F_3 = E_3, F_4 = E_4$. Then

 $E_1 = \frac{3}{5}F_1 + \frac{2}{5}F_2 + F_3 + 2F_4, E_2 = \frac{4}{5}F_1 - \frac{1}{5}F_2 - 2F_3 - 3F_4, E_3 = F_3, E_4 = F_4.$ Let T be the linear mapping of $\mathbb{R}^{4\times 1}$ defined by $T(y_1F_1 + y_2F_2 + y_3F_3 + y_4F_4) = y_3F_1 + y_4F_2.$ Then $\operatorname{Ker}(T) = \operatorname{Im}(T) = \operatorname{Span}(F_1, F_2).$ The required matrix A is the matrix of T with respect to the usual basis of $\mathbb{R}^{4\times 1}$. The columns of A are $AE_1 = F_1 + 2F_2$,

 $AE_2 = -2F_1 - 3F_2, AE_3 = F_1, AE_4 = F_2 \text{ so that } A = \begin{bmatrix} 9 & -14 & 1 & 4 \\ 8 & -13 & 2 & 3 \\ 7 & -12 & 3 & 2 \\ 6 & -11 & 4 & 1 \end{bmatrix}.$ Note that the matrix A is not unique.

Second Solution: If $[x_1, x_2, x_3, x_4]$ is a row of A we must have $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$, $4x_1 + 3x_2 + 2x_3 + x_4 = 0$ which, by Gaussian elimination, has the general solution $x_1 = a + 2b, x_2 = -2a - 3b, x_3 = a, x_4 = b$. Hence $A \begin{bmatrix} a_1 + 2b_1 & -2a_1 - 3b_1 & a_1 & b_1 \\ a_2 + 2b_2 & -2a_2 - 3b_2 & a_2 & b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_2 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_2 \end{bmatrix}$

has the form
$$A = \begin{bmatrix} a_2 + 2b_2 & -2a_2 - 3b_2 & a_2 & b_2 \\ a_3 + 2b_3 & -2a_3 - 3b_3 & a_3 & b_3 \\ a_4 + 2b_4 & -2a_4 - 3b_4 & a_4 & b_4 \end{bmatrix}$$
. Choosing $\begin{bmatrix} a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, we obtain the required matrix

matrix.

(b) Since $A^2 = 0$ and the null space of A is $\text{Span}(F_1, F_2)$ we see that 0 is the only eigenvalue of A. Since the only eigenvectors of A lie in the null space of A, a two dimensional subspace of $\mathbb{R}^{4\times 1}$, we see that $\mathbb{R}^{4\times 1}$ does not have a basis consisting of eigenvectors of A.

5. (a) Since
$$A^2 = 1$$
 the possible eigenvalues of A are 1, -1. Now Null(A - I) = Span($\begin{bmatrix} 1\\1\\-1\\0\\-1\end{bmatrix}$, $\begin{bmatrix} 1\\1\\0\\-1\end{bmatrix}$) and Null(A + I) = $\begin{bmatrix} 1\\-1\\0\\-1\end{bmatrix}$) and Null(A + I) = \begin{bmatrix} 1\\-1\\0\\-1\end{bmatrix})

 $\operatorname{Span}\left(\begin{bmatrix}1\\0\\-1\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\-1\end{bmatrix}\right)$ so that 1, -1 are the eigenvalues of A and a basis for each eigenspace is given above. (b) The matrix $P = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}$ satisfies AP = PD with $D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$. The matrix P is invertible since its columns are linearly independent. This follows from the fact that $\mathbb{R}^{4\times 1} = \text{Null}(A^2 - 1) = \mathbb{R}^{4\times 1}$

 $\operatorname{Null}((A - I)(A + I)) = \operatorname{Null}(A - I) \oplus \operatorname{Null}(A + I)$. Hence $P^{-1}AP = D$.