McGill University MATH 236 Midterm Test

Justify All Your Assertions Determinants not allowed

- 1. Determine which of the following subsets S of the given real vector space V are subspaces of V.
 - (a) $V = \mathbb{R}^{\mathbb{R}}, S = \{f \in V \mid f(2 x) = xf(x) \text{ for all } x \in \mathbb{R}\}.$ (b) $V = \mathbb{R}^2, S = \{(x, y) \in V \mid x^2 = y^2\}.$
- 2. Determine whether the following sequences in $\mathbb{R}^{\mathbb{R}}$ are linearly independent or linearly dependent.
 - (a) $(x-1)^2$, $(x+1)^2$, $(x-2)^2$, $(x+2)^2$. (b) e^x , e^{2x} , e^{3x} .
- 3. (a) Define the following terms: kernel of a linear mapping, eigenvalue of a linear operator.
 - (b) If T is a linear operator on a vector space V and a, b are scalars, show that $T(v) = \lambda v$ implies that $(T^2 + aT + b)(v) = (\lambda^2 + a\lambda + b)v$. If $v \neq 0$ and $T^2 + aT + b = 0$ deduce that $\lambda^2 + a\lambda + b = 0$.
- 4. Let $V = \mathbb{R}^3$ and let $T: V \to V$ be defined by

$$T(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z).$$

- (a) Show that T is linear and that $T^2 5T + 4 = 0$.
- (b) Show that $V = \text{Ker}(T-1) \oplus \text{Ker}(T-4)$.
- (c) Find the eigenvalues of T and a basis of V consisting of eigenvectors of T.