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Solution Sheet for Assignment 4

1.

cA(x) = |xI −A| =

∣∣∣∣∣∣∣∣
x− 2 2 −1 −1

0 x− 3 0 0
1 2 x− 4 −1
−1 2 2 x− 1

∣∣∣∣∣∣∣∣
2. row

= (x− 3)

∣∣∣∣∣∣
x− 2 −1 −1

1 x− 4 −1
−1 2 x− 1

∣∣∣∣∣∣R3 = R3 +R2

= (x− 3)

∣∣∣∣∣∣
x− 2 −1 −1

1 x− 4 −1
0 x− 2 x− 2

∣∣∣∣∣∣C2 = C2 − C3

= (x− 3)

∣∣∣∣∣∣
x− 2 0 −1

1 x− 3 −1
0 0 x− 2

∣∣∣∣∣∣ = (x− 3)2(x− 2)2.

So the eigenvalues are 3 and 2.
Eigenspaces:

E3 = null(3I4 −A) = null


1 2 −1 −1
0 0 0 0
1 2 −1 −1
−1 2 2 2

Gauss
= null


1 2 −1 −1
0 4 1 1
0 0 0 0
0 0 0 0

 = span




6
−1
4
0

 ,


6
−1
0
4


 .

Similarly:

E2 = span




1
0
1
−1


 .

2. If f(x) = anx
n + an−1x

n−1 + . . . + a2x
2 + a1x + a0, then f ′(x) = nanx

n−1 + (n − 1)an−1x
n−2 + . . . + 2a2x + a1 and

xf ′(x) = nanx
n + (n − 1)an−1x

n−1 + . . . + 2a2x
2 + a1x. We see that φ is not onto, because there is no f ∈ V with

φ(f) = 1. Also φ is not one-to-one, because φ(x) = x = φ(x+ 1).

Let
f(x) = anx

n + an−1x
n−1 + . . .+ a2x

2 + a1x+ a0

(with an 6= 0) be an eigenvector with eigenvalue λ. Then

λanx
n + λan−1x

n−1 + . . .+ λa2x
2 + λa1x+ λa0

= φ(f) = nanx
n + (n− 1)an−1x

n−1 + . . .+ 2a2x
2 + a1x.

So
λan = nan, λan−1 = (n− 1)an−1, . . . , λa1 = a1, λa0 = 0.

As an 6= 0, by the first equation we have λ = n. The other equations imply ai = 0 for i < n. So f(x) = anx
n.

Result: The eigenvalues of φ are λ = 0, 1, 2, 3, . . . with corresponding eigenspaces En = span{xn}.

3. a) A an B are not similar because they have different traces (or different determinants or different characteristic
polynomials).

b) A an B are not similar because they have different determinants (or different characteristic polynomials).

c) A and B have the same trace, the same determinants, the same characteristic polynomial, the same rank. We
suspect that they are similar.
Smart proof: cA(x) = (x− 5)(x− 4). All eigenvalues are real and have multiplicity one, so A is diagonalizable, i.e.
there exists an invertible matrix P with P−1AP =

(
5 0
0 4

)
. By the same argument there exists an invertible matrix Q

with Q−1BQ =
(

5 0
0 4

)
. So B = QP−1APQ−1 = (PQ−1)−1A(PQ−1).

Other proof: Write P =
(
x1 x2
x3 x4

)
. Then AP = PB is equivalent to the system of linear equations

5x1 + x3 = 5x1 + x2

5x2 + x4 = 4x4

4x3 = 5x3 + x4

4x4 = 4x4

We need a solution such that P is invertible. For example P =
(

0 1
1 −1

)
. Then B = P−1AP .



4.

cA(x) =
∣∣∣∣ x+ 7 9
−6 x− 8

∣∣∣∣ = x2 − x− 2 = (x− 2)(x+ 1).

E2 = null(2I2 −A) = null
(

9 9
−6 −6

)
= null

(
1 1
0 0

)
by Gauss elimination. So E2 = span

(
1
−1

)
.

Analoguously E1 = null(−I2 −A) = null
(

6 9
−6 −9

)
= null

(
2 3
0 0

)
, so E−1 = span

(
3
−2

)
.

Let P =
(

1 3
−1 −2

)
. Then P is invertible and

P−1AP =
(

2 0
0 − 1

)
.

Moreover

An = (P
(

2 0
0 − 1

)
P−1)n = P

(
2 0
0 − 1

)n
P−1 =

(
1 3
−1 − 2

)(
2n 0

0 (−1)n

)(
−2 − 3

1 1

)
=
(

2n 3(−1)n

−2n − 2(−1)n

)(
−2 − 3

1 1

)
=
(
−2n+1 + 3(−1)n − 3 · 2n + 3(−1)n

2n+1 − 2(−1)n 3 · 2n − 2(−1)n

)
.

5. Let

X1 =


1
1
1
1

 , X2 =


2
0
0
0

 , X3 =


−3
1
0
6

 .

Orthogonalization by Gram-Schmidt:

E1 = X1 =


1
1
1
1

 , E2 = X2 −
X2 • E1

||E1||2
E1 =


2
0
0
0

− 2
4


1
1
1
1

 =


3
2−1
2−1
2−1
2

 ,

E3 = X3 −
X3 • E1

||E1||2
E1 −

X3 • E2

||E2||2
E2 =


−3
1
0
6

− 4
4


1
1
1
1

− −8
3


3
2−1
2−1
2−1
2

 =


0
−4
3−7
3
11
3

 .

Then {E1, E2, E3} is an orthogonal basis of U . To obtain an orthonormal basis we have to divide the vectors by their
lengths: ||E1|| = 2, ||E2|| =

√
3, ||E3|| = 1

3

√
186. So orthonormal basis:


1
2
1
2
1
2
1
2

 ,


3

2
√

3
−1
2
√

3
−1
2
√

3
−1
2
√

3

 ,


0
−4√
186
−7√
186
11√
186


 .


