McGill University Math 223B: Linear Algebra Solution Sheet for Assignment 4

1.

$$c_A(x) = |xI - A| = \begin{vmatrix} x - 2 & 2 & -1 & -1 \\ 0 & x - 3 & 0 & 0 \\ 1 & 2 & x - 4 & -1 \\ -1 & 2 & 2 & x - 1 \end{vmatrix} \begin{vmatrix} 2. \ row \\ = (x - 3) \begin{vmatrix} x - 2 & -1 & -1 \\ 1 & x - 4 & -1 \\ 0 & x - 2 & x - 2 \end{vmatrix} \begin{vmatrix} x - 2 & -1 & -1 \\ 2 & x - 1 \end{vmatrix} \begin{vmatrix} 2. \ row \\ = (x - 3) \begin{vmatrix} x - 2 & -1 & -1 \\ 1 & x - 4 & -1 \\ 0 & x - 2 & x - 2 \end{vmatrix} \begin{vmatrix} x - 2 & -1 & -1 \\ 2 & x - 1 \end{vmatrix} \begin{vmatrix} x - 2 & 0 & -1 \\ 1 & x - 3 & -1 \\ 0 & 0 & x - 2 \end{vmatrix} = (x - 3)^2 (x - 2)^2.$$

So the eigenvalues are 3 and 2. Eigenspaces:

$$E_{3} = \operatorname{null}(3I_{4} - A) = \operatorname{null}\begin{pmatrix} 1 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & -1 & -1 \\ -1 & 2 & 2 & 2 \end{pmatrix} Gauss = \operatorname{null}\begin{pmatrix} 1 & 2 & -1 & -1 \\ 0 & 4 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \operatorname{span}\left\{\begin{pmatrix} 6 \\ -1 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 4 \end{pmatrix}\right\}.$$

Similarly:

$$E_2 = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix} \right\}.$$

2. If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$, then $f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + 2a_2 x + a_1$ and $xf'(x) = na_n x^n + (n-1)a_{n-1} x^{n-1} + \ldots + 2a_2 x^2 + a_1 x$. We see that ϕ is not onto, because there is no $f \in V$ with $\phi(f) = 1$. Also ϕ is not one-to-one, because $\phi(x) = x = \phi(x+1)$. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

(with $a_n \neq 0$) be an eigenvector with eigenvalue λ . Then

$$\lambda a_n x^n + \lambda a_{n-1} x^{n-1} + \ldots + \lambda a_2 x^2 + \lambda a_1 x + \lambda a_0$$

= $\phi(f) = n a_n x^n + (n-1) a_{n-1} x^{n-1} + \ldots + 2a_2 x^2 + a_1 x.$

 So

$$\lambda a_n = na_n, \ \lambda a_{n-1} = (n-1)a_{n-1}, \ \dots, \ \lambda a_1 = a_1, \ \lambda a_0 = 0.$$

As $a_n \neq 0$, by the first equation we have $\lambda = n$. The other equations imply $a_i = 0$ for i < n. So $f(x) = a_n x^n$.

Result: The eigenvalues of ϕ are $\lambda = 0, 1, 2, 3, \ldots$ with corresponding eigenspaces $E_n = span\{x^n\}$.

- 3. a) A an B are not similar because they have different traces (or different determinants or different characteristic polynomials).
 - b) A an B are not similar because they have different determinants (or different characteristic polynomials).
 - c) A and B have the same trace, the same determinants, the same characteristic polynomial, the same rank. We suspect that they are similar.

Smart proof: $c_A(x) = (x-5)(x-4)$. All eigenvalues are real and have multiplicity one, so A is diagonalizable, i.e. there exists an invertible matrix P with $P^{-1}AP = \begin{pmatrix} 5 & 0 \\ 0 & 4 \end{pmatrix}$. By the same argument there exists an invertible matrix Q with $Q^{-1}BQ = \begin{pmatrix} 5 & 0 \\ 0 & 4 \end{pmatrix}$. So $B = QP^{-1}APQ^{-1} = (PQ^{-1})^{-1}A(PQ^{-1})$.

Other proof: Write $P = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. Then AP = PB is equivalent to the system of linear equations

$$\begin{array}{rcrcrcrcrc}
5x_1 + x_3 &=& 5x_1 + x_2 \\
5x_2 + x_4 &=& 4x_4 \\
4x_3 &=& 5x_3 + x_4 \\
4x_4 &=& 4x_4
\end{array}$$

We need a solution such that P is invertible. For example $P = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$. Then $B = P^{-1}AP$.

$$c_A(x) = \begin{vmatrix} x+7 & 9\\ -6 & x-8 \end{vmatrix} = x^2 - x - 2 = (x-2)(x+1).$$

 $E_{2} = \operatorname{null}(2I_{2} - A) = \operatorname{null}\begin{pmatrix}9 & 9\\-6 & -6\end{pmatrix} = \operatorname{null}\begin{pmatrix}1 & 1\\0 & 0\end{pmatrix}$ by Gauss elimination. So $E_{2} = \operatorname{span}\begin{pmatrix}1\\-1\end{pmatrix}$. Analoguously $E_{1} = \operatorname{null}(-I_{2} - A) = \operatorname{null}\begin{pmatrix}6 & 9\\-6 & -9\end{pmatrix} = \operatorname{null}\begin{pmatrix}2 & 3\\0 & 0\end{pmatrix}$, so $E_{-1} = \operatorname{span}\begin{pmatrix}3\\-2\end{pmatrix}$. Let $P = \begin{pmatrix}1 & 3\\-1 & -2\end{pmatrix}$. Then P is invertible and

$$P^{-1}AP = \begin{pmatrix} 2 & 0\\ 0 & -1 \end{pmatrix}.$$

Moreover

$$A^{n} = \left(P\begin{pmatrix}2 & 0\\ 0 & -1\end{pmatrix}P^{-1}\right)^{n} = P\begin{pmatrix}2 & 0\\ 0 & -1\end{pmatrix}^{n}P^{-1} = \begin{pmatrix}1 & 3\\ -1 & -2\end{pmatrix}\begin{pmatrix}2^{n} & 0\\ 0 & (-1)^{n}\end{pmatrix}\begin{pmatrix}-2 & -3\\ 1 & 1\end{pmatrix}$$
$$= \begin{pmatrix}2^{n} & 3(-1)^{n}\\ -2^{n} & -2(-1)^{n}\end{pmatrix}\begin{pmatrix}-2 & -3\\ 1 & 1\end{pmatrix} = \begin{pmatrix}-2^{n+1} + 3(-1)^{n} & -3 \cdot 2^{n} + 3(-1)^{n}\\ 2^{n+1} - 2(-1)^{n} & 3 \cdot 2^{n} - 2(-1)^{n}\end{pmatrix}.$$

5. Let

$$X_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}, \quad X_3 = \begin{pmatrix} -3\\1\\0\\6 \end{pmatrix}.$$

Orthogonalization by Gram-Schmidt:

$$E_{1} = X_{1} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad E_{2} = X_{2} - \frac{X_{2} \bullet E_{1}}{||E_{1}||^{2}} E_{1} = \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix} - \frac{2}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2}\\-\frac{1}{2}\\-\frac{$$

Then $\{E_1, E_2, E_3\}$ is an orthogonal basis of U. To obtain an orthonormal basis we have to divide the vectors by their lengths: $||E_1|| = 2$, $||E_2|| = \sqrt{3}$, $||E_3|| = \frac{1}{3}\sqrt{186}$. So orthonormal basis:

$$\left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{3}{2\sqrt{3}} \\ \frac{-1}{2\sqrt{3}} \\ \frac{-1}{2\sqrt{3}} \\ \frac{-1}{2\sqrt{3}} \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{-4}{\sqrt{186}} \\ \frac{-7}{\sqrt{186}} \\ \frac{11}{\sqrt{186}} \end{pmatrix} \right\}.$$