McGill University Math 223 B: Linear Algebra Assignment 5: due Wednesday March 31, 1999

- 1. If $A = \begin{bmatrix} 4 & 2 \\ -1 & 2 \end{bmatrix}$, find an invertible complex matrix P such that $P^{-1}AP$ is a diagonal matrix.
- 2. Let A be the matrix

1	1	1	
2	1	1	
1	2	1	
1	1	2	
	$egin{array}{c} 1 \\ 2 \\ 1 \\ 1 \end{array}$	$ \begin{array}{cccc} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- (a) Find an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (b) Find symmetric matrices Q, R such that $Q^2 = Q, R^2 = R, QR = RQ = 0$ and A = Q+5R. Use this to compute A^n .
- (c) Find a symmetric matrix B with $B^2 = A$.
- 3. Let V be the vector space of real 2×2 matrices and let T be the mapping of V into itself defined by T(X) = AX XA where $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.
 - (a) Show that T is linear;
 - (b) Find bases for the kernel and image of T.
 - (c) Find the rank and nullity of T. Is T an isomorphism?
- 4. Let T be the linear mapping in problem 3.
 - (a) Find the matrix of T with respect to the basis

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

(b) Find the matrix of T with respect to the basis

$$F_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, F_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, F_3 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, F_4 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

- (c) If A and B are the matrices found in (a) and (b) respectively, find a matrix P such that $P^{-1}AP = B$.
- 5. Find a 4×4 matrix whose column space and null space are spanned by the matrices

1		$\lceil 1 \rceil$	
2		0	
1	,	1	•
2		1	

Hint: Using a suitable basis of \mathbb{R}^4 , first find a linear operator on \mathbb{R}^4 having kernel and image spanned by the above vectors.