1. Find bases for the rowspace, column space and null space of the matrix

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 1 & -3 & 2 & 8 & 11 & -2 \\ 3 & -8 & 4 & 12 & 17 & -1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}.$$

Find the rank and nullity of A.

- 2. Show that the vectors
 - (3, 7, 11, 15, 7, -5), (1, 3, 5, 7, 4, -3), (2, 2, 2, 2, -3, 4)

form a basis for the solution space of the linear homogeneous system:

 $3x_1 - 5x_2 + x_3 + x_4 = 0$ $x_1 - 2x_2 + x_3 = 0$ $5x_1 - 5x_2 + x_3 + 2x_5 + x_6 = 0$ $6x_1 - 6x_2 + x_4 + 2x_5 + x_6 = 0$ $2x_1 - x_4 + 2x_5 + x_6 = 0.$

3. Let V be the vector space of real 2×2 matrices and let W be the subspace spanned by the matrices

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -5 \\ -6 & 6 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -6 \\ -5 & 1 \end{bmatrix}.$$

- (a) Find a basis for W and complete this basis to a basis of V.
- (b) Find a basis for the subspace of W consisting of those matrices in W which have trace zero.
- 4. Let V be the vector space of infinite sequences $x = (x_0, x_1, \dots, x_n, \dots)$ of real numbers and let $W = \{x \in V \mid x_{n+2} = 15x_n 2x_{n+1} \text{ for } n \ge 0\}.$
 - (a) Show that W is a subspace of V;
 - (b) Let $T : W \to \mathbb{R}^2$ be the mapping defined by $T(x) = (x_0, x_1)$. Show that T is an isomorphism of vector spaces and use this to compute the dimension of W.
 - (c) Show that the two sequences $u = (1, 3, 9, \dots, 3^n, \dots), v = (1, -5, 25, \dots, (-5)^n, \dots)$ form a basis of W.
 - (d) If x is the element of W with $x_0 = x_1 = 1$, use the above to find a formula for x_n .
- 5. Let V be the vector space of infinitely differentiable real valued functions on \mathbb{R} and let $W = \{f \in V \mid f'' + 2f' 15f = 0\}.$
 - (a) Show that W is a subspace of V.
 - (b) Show that the functions e^{3x} , e^{-5x} are in W and that they are linearly independent.
 - (c) Given that the dimension of W is 2, show that the mapping $T: W \to \mathbb{R}^2$ defined by T(f) = (f(0), f'(0)) is an isomorphism of vector spaces.
 - (d) Use the above to find the function $f \in W$ satisfying f(0) = f'(0) = 1.