
1. (a) If an = (−1)nx2n

n4n then |an+1/an| = |x|2n+2
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n →∞. Hence, by the ratio test, the series converges absolutely for |x|2/4 < 1 or |x| < 2
and diverges for |x|2/4 > 1 or |x| > 2. Hence the radius of convergence is 2. At x = ±2
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n which converges by the alternating series test.
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|x|3/64 as n → ∞. The series converges absolutely for |x| < 4 and diverges for |x| > 4.
The radius of convergence is therefore 4. At x = 4 the series is
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which is a divergent p-series with p = 1/2. At x = −4 the series is
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convergent by the alternating series test.

2. (a) We have sin(x) =
∑∞

0 (−1)n x2n+1

(2n+1)! so that sin(t2)
t =

∑∞
0 (−1)n x4n+1

(2n+1)! so that

F (x) =
∞
∑

0

(−1)n x4n+2

(4n + 2)(2n + 1)!
=

x2

2
− x6

18
+

x10

50
− · · · .

(b) Since the series for sin(x) converges for all x and the operations performed do not change
the radius of convergence, the series for F (x) converges for all x.

(c) To 6 decimals we have F (.02) = (.04)/2− (.02)6/18 since (.02)10/50 < .00000011.

3. (a) Let r = (t3/3, 2t, 2/t). Then dr
dt = (t2, 2,−2/t2) and |dr

dt | = (t4 + 2)/t2 so that T =
( t4

t4+2 , 2t2
t4+2 , −2

t4+2 ). Hence = 4t
(t4+2)2 (2t22 − t4, 2t2), κ = |dTdt |/|
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(t4+2)2 and N =
dT
dt /|dTdt | = ( 2t2

t4+2 , 2−t4
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t4+2 ).

(b) Since r(1) = (1/3, 2, 2), r′(1) = (1, 2,−2), the tangent line at (1/3, 2, 2) is x = t+1/3, y =
2t + 2, z = 2 − 2t. Between the planes z = 1 and z = 2 we have 1 so that the length of
that part of the curve is

∫ 2
1 (t2 + 1/t2) dt = 17/6.

4. We have ∂u
∂x = x

r
du
dr , ∂u

∂y = y
r

du
dr , ∂u

∂z = z
r

du
dr , so that

(a) (∂u
∂x )2 + (∂u

∂y )2 + (∂u
∂z )2 = x2+y2+z2

rr (du
dr )2 = (du

dr )2,

(b) ∇u = (∂u
∂x , ∂u

∂y , ∂u
∂z ) = 1

r
du
dr (x~i + y~j + z~k).

5. (a) We have ∂z
∂x = 3ey − 3x2, ∂z

∂y = 3xey − 3e3y so that, at (0, 0), we have ∂z
∂x = 3, ∂z

∂y = −3.
Hence the equations of the tangent plane and normal line at (0, 0,−1) are respectively
z = −1 + 3x− 3y and x = −3t, y = 3t, z = −1 + t.



(b) The point (x, y) is a critical point of the function f(x, y) if and only if ∂f
∂x = ∂f

∂y = 0.

Now ∂f
∂x = 3ey − 3x2 and ∂f

∂y = 3xey − 3e3y so that (x, y) is a critical point if and only if
ey = x2 and x = e2y. These two equations have the unique solution x = 1, y = 0. Now
A = ∂2f

∂x2 = −6x, B = ∂2f
∂x∂y = 3ey, C = 3ey − 9e3y so that at the critical point (1, 0) we

have A < 0, AC − B2 = (−6)(−6) − 9 = 27 > 0 which shows that f(1, 0) = 1 is a local
maximum. Since f(−3, 0) = 17 the function f does not have a maximum at (1, 0).

6. (a) We have ∇T = (3x2y + z3, 3y2z + x3, 3z2x + y3) and u =
−−→
PQ = (−1, 2, 2) so that, at

(2,−1, 0), we have DuT = ∇T · u/|u| = (−12, 8,−1) · (−1, 2, 2)/3 = 26/3.

(b) Let r(t) = (x(t), y(t), z(t)) be the position of the mosquito at time t. Then v = dr
dt is the

velocity of the mosquito at time t. We have |v| = speed of mosquito =5 and the direction
of v is, up to sign, the gradient of f at (2,−1, 0), namely (8,−6, 0)/10 = (4,−3, 0)/5 so
that, at (2,−1, 0), we have v = ±((4,−3, 0). At time t, the temperature of the mosquito is
T (r(t)). The rate of change of the temperature of the mosquito per unit time is therefore

d
dt

T (r(t) = ∇T (r(t)) · v

which, at the time the mosquito is at (2,−1, 0), is (−12, 8,−1) · ±(4,−3, 0) = ∓72. Since
the mosquito is flying in the direction of increasing temperature, the rate must be positive
so that v = (−4, 3, 0) and the rate is 72. (Things are getting hot for the mosquito!)

7.
∫ 2
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∫ x2/2
0

x
(1+x2+y2)2 dydx =

∫∫

R
x

(1+x2+y2)2 dydx where R is the region 0 ≤ x ≤ 2, 0 ≤ y ≤ x2/2.

Hence the given integral is equal to
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∫ 2
0 ( 1

(y+1)2 −
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y2+5 ) dy. The
rest is Cal II and is left to the reader.

8. Volume =
∫ π/2

−π/2

∫ cos θ

0
(1− r2)r drdθ.


