MATH 222

December 10,2002

- 1. (a) If $a_n = \frac{(x-1)^n}{2^n \log(n+1)}$, the ratio $\frac{|a_n|}{|a_{n+1}|} = \frac{|x-2|}{2} \frac{\log(n+1)}{\log(n+2)}$ converges to $\frac{|x-1|}{2}$ as $n \to \infty$. By the ratio test, the series converges for |x-1| < 2 and diverges for |x-1| > 2. When x = -1 the series is $\sum (-1)^n / \log(n+1)$ which converges by the alternating series test. When x = 3, the series is $\sum 1 / \log(n+1)$ which diverges by comparison with $\sum 1 / (n+1)$. Hence [-1,3) is the interval of convergence.
 - (b) Differentiating $\frac{1}{1-x} = \sum_{0}^{\infty} x^n$ on (-1,1), we get $\frac{1}{(1-x)^2} = \sum_{1}^{\infty} nx^{n-1} = \sum_{0}^{\infty} (n+1)x^n$ so that $g(x) = \frac{4}{(1-x)^2} = \sum_{0}^{\infty} 4(n+1)x^n$.
- 2. (a) Integrating term by term the series expansion $\sin(x^2) = \sum_0^\infty (-1)^{n+1} x^{4n+2}/(2n+1)!$, we get $S = \int_0^1 \sin(x^2) \, dx = \sum_0^\infty (-1)^{n+1}/(4n+3)(2n+1)! = \frac{1}{3} \frac{1}{7\cdot 3!} + \frac{1}{11\cdot 5!} \frac{1}{15\cdot 7!} + \cdots$ Since $\frac{1}{11\cdot 5!} < .0005$, we have $S = \frac{1}{3} \frac{1}{42} + \frac{1}{1320}$ to three decimal places.
 - (b) Since $(e^{2x} 1)^2 = 4x^2 + \text{higher degree terms and } \ln(1+x) x = -x^2/2 + \text{higher degree terms},$ we have $\frac{(e^{2x} - 1)^2}{\ln(1+x) - x} = \frac{-8 + \text{ higher degree terms}}{1 + \text{ highee degree terms}} \to -8 \text{ as } n \to \infty$
- 3. (a) If $F(x, y, z) = \frac{x^2}{y} + \frac{y^2}{z} + \frac{z^2}{x}$, we have $\nabla F(1, 1, 1) = (1, 1, 1)$ which is normal to the surface F(x, y, z) = 3 at the point (1, 1, 1). Hence the equation of the tangent plane to this surface at (1, 1, 1) is x + y + z = 3.
 - (b) The directional derivative of F(x, y, z) at (1, 1, 1) is $\nabla F(1, 1, 1) \cdot (-1, 2, 4)/\sqrt{21} = 5/\sqrt{21}$.
- 4. (a) Arc length $= s = \int_0^t |\mathbf{r}'(t)| dt = \int_0^t \sqrt{5} dt = \sqrt{5}t$ so that $\mathbf{r} = (\frac{2s}{\sqrt{5}}, \cos\frac{s}{\sqrt{5}}, \sin\frac{s}{\sqrt{5}}).$
 - (b) We have $\mathbf{T} = \frac{d\mathbf{r}}{ds} = \frac{1}{\sqrt{5}}(2, -\sin\frac{s}{\sqrt{5}}, \cos\frac{s}{\sqrt{5}}) = \frac{1}{\sqrt{5}}(2, -\sin t, \cos t)$. Since $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$, where κ is the curvature, we have $\kappa \mathbf{N} = (0, -\sin t, -\cos t)/5$ so that $\kappa = 1/5$ and $\mathbf{N} = (0, -\sin t, -\cos t)$. Hence $\mathbf{B} = \mathbf{T} \times \mathbf{N} = (1, 2\sin t, -2\cos t)/\sqrt{5}$.
- 5. (a) We have $\frac{\partial f}{\partial x} = 2xy 2x$, $\frac{\partial f}{\partial y} = x^2 2y 2$ so that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \iff (x, y) = (0, -1), (\pm 2, 1)$. These are the critical points of f. Now $A = \frac{\partial^2 f}{\partial x^2} = 2y - 2$, $B = \frac{\partial^2 f}{\partial x \partial y} = 2x$, $C = \frac{\partial^2 f}{\partial y^2} = -2$ so that $D = AC - B^2 = 4 - 4y - 4x^2$. At (0, -1) we have D = 8 > 0, A = -4 < 0 so that f has a local maximum at (0, -1). At $(\pm 2, 1)$ we have D = -16 < 0 so that these two points are saddle points of f.
 - (b) The minimum of $d = x^2 + y^2$ occurs at a critical point of $L = x^2 + y^2 \lambda(xy^2 1)$. Since $\frac{\partial L}{\partial x} = 2x \lambda y^2$ and $\frac{\partial L}{\partial y} = 2y 2\lambda xy$ we have $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} = 0 \iff \lambda = \frac{2x}{y^2} = \frac{1}{x}$, using the fact that $x, y \neq 0$ since $xy^2 = 1$. This gives $2x^2 = y^2$ and hence $2x^3 = 1$ from which $(x, y) = (2^{-1/3}, \pm 2^{1/6})$. The minimum distance is $\sqrt{d} = \sqrt{3}/2^{1/3}$

6. (a)
$$\int_{0}^{1} \int_{x^{1/3}}^{1} \sqrt{1 - y^{4}} dy dx = \int_{0}^{1} \int_{0}^{y^{3}} \sqrt{1 - y^{4}} dx dy = \int_{0}^{1} y^{3} \sqrt{1 - y^{4}} dy = 1/6$$

(b)
$$\iint_{x^2+y^2 \le 1} \ln(x^2+y^2) dx dy = \lim_{\epsilon \to 0} \iint_{\epsilon^2 \le x^2+y^2 \le 1} \ln(x^2+y^2) dx dy = \lim_{\epsilon \to 0} \int_0^{\infty} \int_{\epsilon} \ln(r^2) r \, dr d\theta = \lim_{\epsilon \to 0} \pi (r^2 \ln r^2 - r^2)|_{\epsilon}^1 = -\pi.$$

- 7. Using cylindrical coordinates, volume = $\int_0^{\pi} \int_0^{2\sin\theta} \int_0^{r^2} r \, dz \, dr \, d\theta = \int_0^{\pi} \int_0^{2\sin\theta} r^3 \, dr \, d\theta = 4 \int_0^{\pi} \sin^4\theta \, d\theta = 3\pi/2.$
- 8. Projecting onto the *xz*-plane, $I = \iiint_R xz \, dV = \int_0^1 \int_0^{1-x} \int_z^{x+z} xz \, dy \, dz \, dx = \int_0^1 \int_0^{1-x} x^2 z \, dz \, dx = 1/60.$ Projecting onto the *yz*-plane, $I = \int_0^1 \int_0^y \int_{y-z}^{1-z} xz \, dx \, dz \, dy.$