Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Solutions to Written Assignment 1, due in class, Friday, January 24, 2003

1. Let Π_1 be the plane in \mathbb{R}^3 defined by $\vec{n}_1 \cdot (\vec{x} - \vec{x}_0) = 0$. (So \vec{n}_1 is a normal vector and \vec{x}_0 some particular point on Π_1 .) Let Π_2 be a different plane through the same point \vec{x}_0 , with equation $\vec{n}_2 \cdot (\vec{x} - \vec{x}_0) = 0$. Show that the intersection of the two planes is the line given by the equation $\vec{x} = \vec{x}_0 + t(\vec{n}_1 \times \vec{n}_2)$.

The assumption that the planes are different implies that the normal vectors \vec{n}_1 and \vec{n}_2 are in different directions, so that $\vec{n}_1 \times \vec{n}_2 \neq \vec{0}$.

If \vec{x} is on the intersection of the two planes, then $\vec{x} - \vec{x}_0$ is orthogonal to both \vec{n}_1 and \vec{n}_2 and hence is a multiple of $\vec{n}_1 \times \vec{n}_2$. So $\vec{x} - \vec{x}_0 = t(\vec{n}_1 \times \vec{n}_2)$ and \vec{x} is on the line described.

Conversely, if \vec{x} is on the line, then $\vec{x} - \vec{x}_0 = t(\vec{n}_1 \times \vec{n}_2)$ for some scalar t. So $(\vec{x} - \vec{x}_0) \cdot \vec{n}_1 = t(\vec{n}_1 \times \vec{n}_2) \cdot \vec{n}_1 = t(0) = 0$ and \vec{x} is on Π_1 . Similarly, \vec{x} is on Π_2 , too.

- 2. Let A, B, C and D be any points in the plane that determine a quadrilateral ABCD. (We assume that these are listed in an order so that the diagonals are \overline{AC} and \overline{BD} , and they cross.) Suppose that E, F, G and H are the midpoints of \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} respectively. Using vector methods, show that
 - (a) The quadrilateral EFGH is a parallelogram.
 - (b) Assuming that ABCD is itself a parallelogram, show that EFGH is a rectangle if and only if ABCD is a rhombus.
 - (c) Assuming that ABCD is itself a parallelogram, show that EFGH is a rhombus if and only if ABCD is a rectangle.
- 1. $\vec{EF} = \vec{EB} + \vec{BC} = \frac{1}{2}\vec{AB} + \frac{1}{2}\vec{BC} = \frac{1}{2}\vec{AC}$, and $\vec{HG} = \vec{HD} + \vec{DG} = \frac{1}{2}\vec{AD} + \frac{1}{2}\vec{DC} = \frac{1}{2}\vec{AC}$. Thus the sides \vec{EF} and \vec{HG} are of the same length and in the same direction, showing that \vec{EFGH} is a parallelogram. We also note that $\vec{EH} = \vec{FG} = \frac{1}{2}\vec{BD}$.
- 2. If ABCD is a parallelogram, then $\vec{AB} = \vec{DC} = \vec{u}$ and $\vec{BC} = \vec{AD} = \vec{v}$ for some vectors \vec{u} and \vec{v} . So $\vec{EF} = \frac{1}{2}(\vec{u} + \vec{v})$ and $\vec{EH} = \frac{1}{2}(\vec{v} \vec{u})$. (We use "iff." to abbreviate "if and only if".)

EFGH is a rectangle iff.

 $\vec{EF} \cdot \vec{EH} = 0$ iff.

 $\frac{1}{2}(\vec{u}+\vec{v})\cdot\frac{1}{2}(\vec{v}-\vec{u})=0$ iff.

$$\begin{split} &\frac{1}{4}(\vec{u}\cdot\vec{v}+\vec{v}\cdot\vec{v}-\vec{u}\cdot\vec{u}-\vec{v}\cdot\vec{u})=0 \text{ iff.} \\ &\vec{u}\cdot\vec{u}=\vec{v}\cdot\vec{v} \text{ iff.} \\ &||\vec{u}||^2=||\vec{v}||^2 \text{ iff.} \\ &||\vec{u}||=||\vec{v}|| \text{ (since }||\vec{u}|| \text{ and }||\vec{v}|| \text{ are positive scalars) iff.} \\ &ABCD \text{ is a rhombus.} \end{split}$$

3. EFGH is a rhombus iff.

$$\begin{split} ||\vec{EF}|| &= ||\vec{EH}|| \text{ iff.} \\ \frac{1}{2}||\vec{u} + \vec{v}|| &= \frac{1}{2}||\vec{v} - \vec{u}|| \text{ iff.} \\ ||\vec{u} + \vec{v}||^2 &= ||\vec{v} - \vec{u}||^2 \text{ (since } ||\vec{u} + \vec{v}|| \text{ and } ||\vec{v} - \vec{u}|| \text{ are positive numbers) iff.} \\ (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) &= (\vec{v} - \vec{u}) \cdot (\vec{v} - \vec{u}) \text{ iff.} \\ \vec{u} \cdot \vec{u} + 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v} &= \vec{u} \cdot \vec{u} - 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v} \text{ iff.} \\ 4(\vec{u} \cdot \vec{v}) &= 0 \text{ iff.} \\ \vec{u} \text{ and } \vec{v} \text{ are perpendicular iff.} \\ ABCD \text{ is a rectangle.} \end{split}$$

(Note that in this problem, both directions of the "if and only if" statements can be done at once; this happens sometimes, and does not happen other times.)