Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 1, due in class, Friday, January 24, 2003

- 1. Let Π_1 be the plane in \mathbb{R}^3 defined by $\vec{n}_1 \cdot (\vec{x} \vec{x}_0) = 0$. (So \vec{n}_1 is a normal vector and \vec{x}_0 some particular point on Π_1 .) Let Π_2 be a different plane through the same point \vec{x}_0 , with equation $\vec{n}_2 \cdot (\vec{x} \vec{x}_0) = 0$. Show that the intersection of the two planes is the line given by the equation $\vec{x} = \vec{x}_0 + t(\vec{n}_1 \times \vec{n}_2)$.
- 2. Let A, B, C and D be any points in the plane that determine a quadrilateral ABCD. (We assume that these are listed in an order so that the diagonals are \overline{AC} and \overline{BD} , and they cross.) Suppose that E, F, G and H are the midpoints of \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} respectively. Using vector methods, show that
 - (a) The quadrilateral EFGH is a parallelogram.
 - (b) Assuming that ABCD is itself a parallelogram, show that EFGH is a rectangle if and only if ABCD is a rhombus.
 - (c) Assuming that ABCD is itself a parallelogram, show that EFGH is a rhombus if and only if ABCD is a rectangle.