Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 7, due in class, March 28, 2003

In these problems, we assume that $T : \mathcal{R}^n \longrightarrow \mathcal{R}^n$ is a linear operator, and we let T^k be the composite of T with itself k times. (So $T^0 = I$, $T^1 = T$ and $T^2 \vec{v} = T(T\vec{v})$ for any $\vec{v} \in \mathcal{R}^n$, etc.) For any polynomial $p(x) = \sum_{k=0}^m a_k x^k$, we define $p(T) : \mathcal{R}^n \longrightarrow \mathcal{R}^n$ to be the operator such that $p(T)\vec{v} = \sum_{k=0}^m a_k(T^k\vec{v})$ for $\vec{v} \in \mathcal{R}^n$.

1. Show that p(T) is linear. Show that if $p(x) = p_1(x)p_2(x)$, then p(T) is the composition $p_1(T)p_2(T)$.

Let \vec{v} and \vec{w} be vectors in \mathcal{R}^n and c be a scalar. Then $p(T)(\vec{v} + \vec{w}) = \sum_{k=0}^{m} a_k(T^k(\vec{v} + \vec{w})) = \sum_{k=0}^{m} a_k(T^k\vec{v} + T^k\vec{w}) = (\sum_{k=0}^{m} a_k(T^k\vec{v})) + (\sum_{k=0}^{m} a_k(T^k\vec{w})) = p(T)\vec{v} + p(T)\vec{w}$. Also $p(T)(c\vec{v}) = \sum_{k=0}^{m} a_k(T^k(c\vec{v})) = \sum_{k=0}^{m} a_kc(T^k\vec{v}) = c(\sum_{k=0}^{m} a_k(T^k\vec{v}))$. This verifies that p(T) is linear. (We use the linearily of T^k in both parts.

Now suppose that $p_1(x) = b_0 + b_1 x + \dots + b_{m_1} x^{m_1}$ and $p_2(x) = c_0 + c_1 x + \dots + c_{m_2} x^{m_2}$. Then $p(x) = p_1(x) p_2(x) = b_0 p_2(x) + b_1 x p_2(x) + \dots + b_{m_1} x_1^m p_2(x)$.

So $p_1(T) = b_0 + b_1 T + \dots + b_{m_1} T^{m_1}$ and $p_2(T) = c_0 + c_1 T + \dots + c_{m_2} T^{m_2}$. Then

$$p(T) = b_0(c_0 + c_1T + \dots + c_{m_2}T^{m_2}) + b_1(c_0T + c_1T^2 + \dots + c_{m_2}T^{m_2+1}) + \dots +$$

$$b_{m_1}(c_0T^{m_1}+c_1T^{m_1+1}+\cdots+c_{m_2}T^{m_2+m_1}).$$

We need to show that, for each $\vec{v} \in \mathcal{R}^n$, we have that $p(T)\vec{v} = p_1(T)p_2(T)\vec{v}$. We first consider $T^j(p_2(T)\vec{v}) = T^j(c_0\vec{v} + c_1T\vec{v} + \dots + c_{m_2}T^{m_2}\vec{v})$; because T^j is linear, this equals $c_0T^j\vec{v} + c_1T^j(T\vec{v}) + \dots + c_{m_2}T^j(T^{m_2}\vec{v}) = c_0T^j\vec{v} + c_1T^{j+1}\vec{v} + \dots + c_{m_2}T^{m_2+j}\vec{v}$. This holds for any j from 0 to m_1 (and beyond, for that matter). Now $p_1(T)p_2(T)\vec{v} = \sum_{j=0}^{m_1} b_jT^j(p_2(T)\vec{v})$ by definition. Applying the above observation for each j tells us this is equal to

$$p(T)\vec{v} = b_0(c_0\vec{v} + c_1T\vec{v} + \dots + c_{m_2}T^{m_2}\vec{v}) + b_1(c_0T\vec{v} + c_1T^2\vec{v} + \dots + c_{m_2}T^{m_2+1}\vec{v}) + \dots + b_{m_1}(c_0T^{m_1}\vec{v} + c_1T^{m_1+1}\vec{v} + \dots + c_{m_2}T^{m_2+m_1}\vec{v}).$$

2. Show that, for any linear T and fixed $\vec{v} \in \mathcal{R}^n$, there is a nonzero polynomial p(x) of degree at most n such that $p(T)\vec{v} = \vec{0}$. Suppose that (for fixed T and fixed $\vec{v} \neq \vec{0}$) we pick such a p of smallest possible degree and λ is a real number such that $p(\lambda) = 0$; prove that there is a nonzero vector \vec{w} such that $T\vec{w} = \lambda\vec{w}$. [Hint: $p(\lambda) = 0$ if and only if there is a polynomial q(x) such that $p(x) = (x - \lambda)q(x)$.]

The set of n + 1 vectors $\{\vec{v}, T\vec{v}, \ldots, T^n\vec{v}\}$ must be dependent, since they live in *n*-dimensional space. Thus there are scalars a_0, \ldots, a_n , not all zero such that $\sum_{j=0}^n a_j T^j \vec{v} = \vec{0}$. (Actually, it is possible that $T^r \vec{v} = T^s \vec{v}$ for some $0 \le r < s \le n$, but in that case we could just let $a_r = 1$ and $a_s = -1$ and all the other a_j 's be zero.) Let $p(x) = \sum_{j=0}^n a_j x^j$; the degree of p is the largest j such that $a_j \ne 0$. It is $\le n$.

Now suppose p has been chosen with smallest possible degree such that $p(T)\vec{v} = \vec{0}$, and that $p(\lambda) = 0$. Let $p(x) = (x - \lambda)q(x)$ where of course q has degree one smaller than that of p. Then by the previous question, $p(T)\vec{v} = (T - \lambda I)q(T)\vec{v}$. Our degree assumption tells us that $q(T)\vec{v} \neq \vec{0}$, so we call this vector \vec{w} ; we have $(T - \lambda I)\vec{w} = \vec{0}$, or $T\vec{w} = \lambda I\vec{w} = \lambda\vec{w}$. (In this case, we naturally call λ and eigenvalue for T and \vec{w} a corresponding eigenvector.)