Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 5, due in class, March 14, 2003

1. Suppose that A and B are $n \times n$ matrices.

- (a) Show that if AB = BA, then $(AB)^2 = A^2B^2$.
- (b) Show that if A and B are invertible and $(AB)^2 = A^2B^2$, then AB = BA.
- (c) Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Show that $(AB)^2 = A^2 B^2$, but $AB \neq BA$.
- (d) Find an example where $(AB)^2 = A^2B^2$, $AB \neq BA$ and A is invertible.
- (a) Assume AB = BA. $(AB)^2 = (AB)(AB) = A(BA)B = A(AB)B = (AA)(BB) = A^2B^2$. We use associativity on both sides, and the commutativity assumption in the middle.
- (b) Suppose that $(AB)^2 = A^2B^2$, that is ABAB = AABB. Now suppose also that A^{-1} and B^{-1} exist. Then $A^{-1}(ABAB)B^{-1} = A^{-1}(AABB)B^{-1}$. Associativity (useful, that) gives us $(A^{-1}A)BA(BB^{-1}) = (A^{-1}A)AB(BB^{-1})$, so IBAI = IABI and then AB = BA.
- (c) $AB = B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \neq BA = A$. Note also (by direct calculation) that $A^2 = A$, $B^2 = B$, so $A^2B^2 = B = AB = (AB)^2$.
- (d) How about $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$?
- 2. (a) Let $V = span\{\vec{v}_1, \ldots, \vec{v}_k\}$ be a subspace of \mathcal{R}^n , and suppose that $\{\vec{w}_1, \ldots, \vec{w}_\ell\}$ is an independent subset of V. Show that $\ell \leq k$.
 - (b) Use this to show that any two bases for V have the same number of elements.
 - (a) The idea of this proof (there are others) is to replace elements of {v
 ₁,...,v
 _k} by w
 [']s one by one, until we run out of w
 [']s, and to show that until this happens we must still have at least one v
 ['] left.
 Write w
 ₁ = a₁v
 ₁ + ··· + a_kv
 _k; since w
 ₁ ≠ 0, at least one of the a_j's is not zero; without loss of generality (my favourite mathematical phrase) a₁ ≠ 0. Then v
 ₁ = 1/a₁w
 ₁ a₂/a₁v
 ₂ ··· a_kv
 _k and v
 ₁ ∈ span{w
 ₁, v
 ₂,...,v
 _k}. If l = 1, we're finished, since then all we would need to know is that k ≥ 1. But most likely l > 1 so we keep going. Anyway, we know that V = span{w
 ₁, v
 ₂,...,v
 _k}, so w
 ₂ = b₁w
 ₁ + b₂v
 ₂ + ··· + b_kv
 _k for some scalars b₁,..., b_k. We

must have $b_j \neq 0$ for some $j \geq 2$ since otherwise \vec{w}_2 would be a multiple of \vec{w}_1 , contradicting our assumption that the set of \vec{w} 's is independent. (You knew that had to come in somewhere.) WLOG, $b_2 \neq 0$ and then $\vec{v}_2 \in span\{\vec{w}_1, \vec{w}_2, \vec{v}_3, \ldots, \vec{v}_k\}$ which implies that $V = span\{\vec{w}_1, \vec{w}_2, \vec{v}_3, \ldots, \vec{v}_k\}$.

The rest of the proof is properly an induction, although the whole idea is in the last two paragraphs. Here goes: Suppose that we have $m < \ell$ and $V = span\{\vec{w}_1, \ldots, \vec{w}_m, \vec{v}_{m+1}, \ldots, \vec{v}_k\}$. We can find scalars c_1, \ldots, c_k such that $\vec{w}_{m+1} = c_1\vec{w}_1 + \cdots + c_m\vec{w}_m + c_{m+1}\vec{v}_{m+1} + \cdots + c_k\vec{v}_k$. If it were the case that $c_j = 0$ for all j > m, we would have to have that $\vec{w}_{m+1} \in span\{\vec{w}_1, \ldots, \vec{w}_m\}$ contrary to our assumption that the set of \vec{w} 's is independent. WLOG, $c_{m+1} \neq 0$, so we can solve for \vec{v}_{m+1} in terms of $\vec{w}_1, \ldots, \vec{w}_{m+1}, \vec{v}_{m+2}, \ldots, \vec{v}_k$. So if we replace \vec{v}_{m+1} by \vec{w}_{m+1} we still have a spanning set for V.

We keep doing this until we run out of \vec{w} 's; we cannot run out of \vec{v} 's first. So there are no more \vec{w} 's than \vec{v} 's; id est, $\ell \leq k$.

(b) Now this is easy. If $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_k\}$ and $\mathcal{C} = \{\vec{w}_1, \dots, \vec{w}_\ell\}$ are both bases for V, then by the last part, $\ell \leq k$ (using that \mathcal{B} spans V and \mathcal{C} is independent). But since also \mathcal{C} spans V and \mathcal{B} is independent, $k \leq \ell$.