
Mathematics 189-133B, Winter 2003
Vectors, Matrices and Geometry

Written Assignment 5, due in class, March 14, 2003

1. Suppose that A and B are n× n matrices.

(a) Show that if AB = BA, then (AB)2 = A2B2.

(b) Show that if A and B are invertible and (AB)2 = A2B2, then AB =
BA.

(c) Let A =
(

1 0
0 0

)
and B =

(
1 1
0 0

)
. Show that (AB)2 = A2B2,

but AB 6= BA.

(d) Find an example where (AB)2 = A2B2, AB 6= BA and A is invert-
ible.

(a) Assume AB = BA. (AB)2 = (AB)(AB) = A(BA)B = A(AB)B =
(AA)(BB) = A2B2. We use associativity on both sides, and the
commutativity assumption in the middle.

(b) Suppose that (AB)2 = A2B2, that is ABAB = AABB. Now
suppose also that A−1 and B−1 exist. Then A−1(ABAB)B−1 =
A−1(AABB)B−1. Associativity (useful, that) gives us (A−1A)BA(BB−1) =
(A−1A)AB(BB−1), so IBAI = IABI and then AB = BA.

(c) AB = B =
(

1 1
0 0

)
6= BA = A. Note also (by direct calculation)

that A2 = A, B2 = B, so A2B2 = B = AB = (AB)2.

(d) How about A =
(

1 1
0 1

)
and B =

(
1 0
0 0

)
?

2. (a) Let V = span{~v1, . . . , ~vk} be a subspace of Rn, and suppose that
{~w1, . . . , ~w`} is an independent subset of V . Show that ` ≤ k.

(b) Use this to show that any two bases for V have the same number of
elements.

(a) The idea of this proof (there are others) is to replace elements of
{~v1, . . . , ~vk} by ~w’s one by one, until we run out of ~w’s, and to show
that until this happens we must still have at least one ~v left.
Write ~w1 = a1~v1 + · · · + ak~vk; since ~w1 6= ~0, at least one of the
aj ’s is not zero; without loss of generality (my favourite mathemat-
ical phrase) a1 6= 0. Then ~v1 = 1

a1
~w1 − a2

a1
~v2 − · · · − ak

a1
~vk and

~v1 ∈ span{~w1, ~v2, . . . , ~vk}. If ` = 1, we’re finished, since then all
we would need to know is that k ≥ 1. But most likely ` > 1 so
we keep going. Anyway, we know that V = span{~w1, ~v2, . . . , ~vk},
so ~w2 = b1 ~w1 + b2~v2 + · · · + bk~vk for some scalars b1,. . . , bk. We
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must have bj 6= 0 for some j ≥ 2 since otherwise ~w2 would be a
multiple of ~w1, contradicting our assumption that the set of ~w’s is
independent. (You knew that had to come in somewhere.) WLOG,
b2 6= 0 and then ~v2 ∈ span{~w1, ~w2, ~v3, . . . , ~vk} which implies that
V = span{~w1, ~w2, ~v3, . . . , ~vk}.
The rest of the proof is properly an induction, although the whole
idea is in the last two paragraphs. Here goes: Suppose that we have
m < ` and V = span{~w1, . . . , ~wm, ~vm+1, . . . , ~vk}. We can find scalars
c1, . . . , ck such that ~wm+1 = c1 ~w1 + · · ·+ cm ~wm + cm+1~vm+1 + · · ·+
ck~vk. If it were the case that cj = 0 for all j > m, we would have
to have that ~wm+1 ∈ span{~w1, . . . , ~wm} contrary to our assumption
that the set of ~w’s is independent. WLOG, cm+1 6= 0, so we can solve
for ~vm+1 in terms of ~w1,. . . ,~wm+1, ~vm+2,. . . , ~vk. So if we replace ~vm+1

by ~wm+1 we still have a spanning set for V .
We keep doing this until we run out of ~w’s; we cannot run out of ~v’s
first. So there are no more ~w’s than ~v’s; id est, ` ≤ k.

(b) Now this is easy. If B = {~v1, . . . , ~vk} and C = {~w1, . . . , ~w`} are both
bases for V , then by the last part, ` ≤ k (using that B spans V and
C is independent). But since also C spans V and B is independent,
k ≤ `.
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