Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Solutions to written Assignment 4, due in class, Friday, February 21, 2003

Let $p(x) = \sum_{j=0}^{k} a_j x^j = a_0 + a_1 x + \dots + a_k x^k$ be a polynomial with real coefficients, and A an $n \times n$ matrix. We define $p(A) = \sum_{j=0}^{k} a_j A^j = a_0 I + a_1 A + \dots + a_k A^k$.

- 1. Show that if there is an invertible matrix P such that $B = P^{-1}AP$, then $p(B) = P^{-1}p(A)P$. [Hint: first show that $B^j = P^{-1}A^jA$.] Proof: $B^j = (P^{-1}AP)^j = (P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)$ $= P^{-1}A(PP^{-1})A(PP^{-1})A\cdots(PP^{-1})AP$ by associativity of matrix multiplication. $PP^{-1} = I$, so this is $P^{-1}AIA\cdots IAP = P^{-1}A^jP$. So $p(B) = \sum_{j=0}^k a_j B^j = \sum_{j=0}^k a_j (P^{-1}AP)^j = \sum_{j=0}^k a_j P^{-1}A^jP = P^{-1}(\sum_{j=0}^k a_j A^jP)$ by distributivity (and the fact that each a_j is a scalar), and this equals $P^{-1}(\sum_{j=0}^k a_j A^j)P$ by distributivity again; i.e., $p(B) = P^{-1}p(A)P$.
- 2. Show that, if p(A) = 0, but $a_0 \neq 0$, then A is invertible. In fact, show that there is a polynomial q(x) such that q(A)A = I.

Proof: If p(A) = 0, then $a_0I + a_1A + \cdots + a_kA^k = 0$, so $a_0I = -a_1A - a_2A^2 - \cdots - a_kA^k$, and since $a_0 \neq 0$, this gives $I = -\frac{a_1}{a_0}A - \cdots - \frac{a_k}{a_0}A^k$. By distributivity, this equals $A(-\frac{a_1}{a_0}I - \cdots - \frac{a_k}{a_0}A^{k-1})$, so if $q(x) = \sum_{j=0}^{k-1} -\frac{a_j}{a_0}x^j$, then Aq(A) = I, as advertized.