Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 10, due in class, April 9, 2003

1. Show that if P is an orthogonal matrix, then if \vec{v} and \vec{w} are nonzero vectors, the angle between \vec{v} and \vec{w} is the same as the angle between $P\vec{v}$ and $P\vec{w}$. Recall that the angle θ between \vec{v} and \vec{w} is determined by the fact that

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|||\vec{w}||}.$$

- 2. Show that the only possible real eigenvalues of an orthogonal matrix are $\pm 1.$
- (In these problems, you want to write $\vec{u}^T \vec{v}$ for $\vec{u} \cdot \vec{v}$ sometimes.)