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1. (a) Find parametric equations for the line passing through the point A(0, 1, 0) with the direction
[1, 1, 1].

(b) Find the distance of the point Q = (1, 0, 2) to the line in 1(a).
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2. (a) Find the normal equation of the plane P passing through the points

A(3, 2, 1), B(8, 1, 2), C(−4, 1,−1).

(b) Find the point D where the line L with parametric equations

x = 1 + 3t, y = −1 + 2t, z = t

meets the plane P in 2(a) and find the cosine of the angle θ (0 ≤ θ ≤ π/2) between L and
the line through D perpendicular to P .
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3. Solve the following system of linear equations by Gauss-Jordan elimination:

x1 + 2x2 + x3 − 4x4 = 1

x1 + 3x2 + 7x3 + 2x4 = 2

x1 − 11x3 − 16x4 = −1.

3



MATH 133 Final Examination December 11, 2006

4. (a) Let u1, u2, u3 be three linearly independent vectors in R4. If u4 is another vector in R4 which
does not lie in Span(u1, u2, u3), show that u1, u2, u3, u4 are linearly independent. Identify
the subspace Span(u1, u2, u3, u4) of R4.

(b) A rhombus is a parallelogram all of whose sides are equal. Using vectors, show that a parallel-
ogram is a rhombus if and only if the diagonals of the parallelogram are orthogonal.
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5. (a) Find all values of a and b for which the system

x + 2y − bz = 1

x + 3y − z = a

2x + 5y + z = 1

will have (i) a unique solution, (ii) no solution, (iii) more than one solution.

(b) Solve the system in case (iii) above.
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6. Let

A =

[
1 0
−5 2

]
.

(a) Write A−1 as a product of two elementary matrices.

(b) Write A as a product of two elementary matrices.
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7. Let

A =




1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8




(a) Bring A to row reduced echelon form.

(b) Find bases for (i) the row space, (ii) the column space and (iii) the null space of A.
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8. (a) Let A,B be 2× 2 matrices with det(A) = 2, det(B) = 3. Find

(i) det(−A3B−2)

(ii) det(2A−1BA)

(iii) det(A−1AT )

(b) If

∣∣∣∣
a d g
b e h
c f i

∣∣∣∣ = 1 find

∣∣∣∣
a + d d + g g + a
b + e e + h h + b
c + f f + i i + c

∣∣∣∣.

State the properties of determinants that you use in your calculation.
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9. Let L be the line in R2 with equation 2x+3y = 0 and let S, T be respectively be the transformations:
reflection in L and projection onto L.

(a) Find the standard matrices of S, T , S ◦ T and T ◦ S.

(b) Find the eigenvalues of S and T geometrically or otherwise.
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10. If A =




3 1 1
1 3 1
1 1 3


,

(a) find the characteristic polynomial of A and the eigenvalues of A;

(b) find a basis of each eigenspace and an orthogonal matrix P such that P−1AP is a diagonal
matrix.
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11. Let W = span

(



1
0
1
0


 ,




−1
2
0
1


 ,




1
1
1
1




)

(a) Use the Gram-Schmidt process to find an orthonormal basis for W .

(b) Find a basis for W⊥.
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