
Solutions for MATH 133 Fall 2006 Final Exam

1. (a) The parametric equations for the line passing through A(0, 1, 0) and having direction (1, 1, 1) are
x = t, y = 1 + t, z = t.

(b) The distance of the point Q = (1, 0, 2) to the line in 1(a) is ||−→AQ × (1, 1, 1)||/||(1, 1, 1|| = ||(−3, 1, 2)||/√3 =√
14/

√
3 =

√
42/3. It is also equal to ||−→AQ− (

−→
AQ · (1, 1, 1)/(1, 1, 1) · (1, 1, 1))(1, 1, 1)|| = ||(1,−5, 4)||/3.

2. (a) The normal equation of the plane through the points A(3, 2, 1), B(8, 1, 2), C(−4, 1,−1) is
(x − 3, y − 2, z − 1) · −→n = 0 where −→n =

−−→
AB × −→AC = (5,−1, 1) × (−7,−1,−2) = (3, 3,−12). This equation

can be written as 3x + 3y − 12z = 3 or x + y − 4z = 1.

(b) The line x = 1 + 3t, y = −1 + 2t, z = t meets the above plane for the value of t which satisfies
(1+3t)+ (−1+2t)−4t = 1. This implies t = 1 which gives D(4, 1, 1) as the point of intersection. The cosine
of the acute angle between this line and the line through D perpendicular to the plane is
|(3, 2, 1) · ((1, 1,−4)|/||(3, 2, 1)||||(1, 1,−4)|| = 1/6

√
7 =

√
7/42.

3. Row reducing the augmented matrix of the system to reduced echelon form, we get



1 2 1 −4 1
1 3 7 2 2
1 0 −11 −16 −1


 R2 → R2 −R1

R3 → R3 −R1




1 2 1 −4 1
0 1 6 6 1
0 −2 −12 −12 −2




R1 → R1 − 2R2

R3 → R3 + 2R2




1 0 −11 −16 −1
0 1 6 6 1
0 0 0 0 0




Thus the given system is equivalent to x1 − 11x3 − 16x4 = −1, x2 + 6x3 + 6x4 = 1 whose solutions are
x1 = −1 + 11s + 16t, x2 = 1− 6s− 6t, x3 = s, x4 = t with s, t arbitrary scalars.

4. (a) The relation a1u1 + a2u2 + a3u3 + a4u4 = 0 implies a4 = 0 since u4 /∈ Span(u1, u2, u3, u4). But then
a1u1 + a2u2 + a3u3 = 0 which implies a1 = a2 = a3 = 0 since u1, u2, u3 are linearly independent. Thus
u1, u2, u3, u4 are linearly independent which implies Span(u1, u2, u3, u4) = R4 since dim(R4) = 4.

(b) If u, v are the sides of the parallelogram then u+v, u−v are its diagonals. Since (u−v) ·(u+v) = ||u||2−||v||2,
we see that the diagonals are orthogonal if and only if ||u|| = ||v||.

5. (a) Row reducing the augmented matrix of the system to echelon form, we get



1 2 −b 1
1 3 −1 a
2 5 1 1


 R2 → R2 −R1

R3 → R3 − 2R1




1 2 −b 1
0 1 b− 1 a− 1
0 1 2b + 1 −1




R3 → R3 −R2




1 2 −b 1
0 1 b− 1 a− 1
0 0 b + 2 −a




which shows that the given has a unique solution if b 6= −2 and no solution if b = −2, a 6= 0.

(b) If b = −2, a = 0, the given system is equivalent to x1 + 2x2 + 2x3 = 1, x2 − 3x3 = −1 which has the infinite
solution set x1 = 3− 8s, x2 = −1 + 3s, x3 = s with s an arbitrary scalar.

6. (a) Row reducing A to reduced echelon form, we get
[

1 0
−5 2

]
R2 → R2 + 5R1

[
1 0
0 2

]
R2 → R2/2

[
1 0
0 1

]

Which shows that [
1 0
0 1/2

] [
1 0
5 1

]
A = I, A−1 =

[
1 0
0 1/2

] [
1 0
5 1

]
.

(b) Hence A =
([

1 0
0 1/2

] [
1 0
5 1

])−1

=
[
1 0
5 1

]−1 [
1 0
0 1/2

]−1

=
[

1 0
−5 1

] [
1 0
0 2

]
.
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7. (a) Row reducing A to echelon form, we get



1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8




R2 → R2 − 2R1

R3 → R3 − 3R1

R4 → R4 − 4R1




1 2 3 4 5
0 −1 −2 −3 −4
0 −2 −4 −6 −8
0 −3 −6 −9 −12




R1 → R1 + 2R2

R3 → R3 − 2R2

R4 → R4 − 3R2




1 0 −1 −2 −3
0 −1 −2 −3 −4
0 0 0 0 0
0 0 0 0 0




which is row equivalent to B =




1 0 −1 −2 −3
0 1 2 3 4
0 0 0 0 0
0 0 0 0 0


.

(b) Since row equivalent matrices have the same row space and the non-zero rows of a matrix in echelon form is
a basis for its row space we see that (1, 0,−1,−2,−3), (0, 1, 2, 3, 4) is a basis for the row space of A. Since
the first two columns of B are a basis for its column space and the colums of A and B have the same
dependence relations, we see that the first two columns of A are a basis for the column space of A. Since
row equivalent matrices have the same null space we see that the null space of A is the solution space of
x1 − 2x3 − 3x4 − 4x5 = 0, x2 + 2x3 + 3x4 + 4x5 = 0. Hence




2
−2
1
0
0




,




3
−3
0
1
0




,




4
−4
0
0
1




is a basis for the null space of A.

8. (a) det(−A3B−2) = (−1)2 det(A)3 det(B)−2 = 23/32,
det(2A−1BA) = 22 det(A)−1 det(B) det(A) = 12,
det(A−1AT ) = det(A)−1 det(A) = 1.

(b)

∣∣∣∣
a + d d + g g + a
b + e e + h h + b
c + f f + i i + c

∣∣∣∣ =
∣∣∣∣
a d + g g + a
b e + h h + b
c f + i i + c

∣∣∣∣ +
∣∣∣∣
d d + g g + a
e e + h h + b
f f + i i + c

∣∣∣∣ (linearity in a column)

=
∣∣∣∣
a d + g g
b e + h h
c f + i i

∣∣∣∣ +
∣∣∣∣
d g g + a
e h h + b
f i i + c

∣∣∣∣ (det unchanged by type I column operation)

=
∣∣∣∣
a d g
b e h
c f i

∣∣∣∣ +
∣∣∣∣
d g a
e h b
f i c

∣∣∣∣ (det unchanged by type I column operation)

= 2
∣∣∣∣
a d g
b e h
c f i

∣∣∣∣ = 2 (det changes sign if 2 columns interchanged).

9. (a) We have L = Span(
[

3
−2

]
) and T (

[
x
y

]
) = projL(

[
x
y

]
) = 3x−2y

13

[
3
−2

]
= 1

13

[
9 −6
−6 4

] [
x
y

]
so that the standard

matrix of T is 1
13

[
9 −6
−6 4

]
. Now S(

[
x
y

]
) =

[
x
y

]
− 2perpL(

[
x
y

]
) =

[
x
y

]
− 2(

[
x
y

]
− projL(

[
x
y

]
)) =

2projL(
[
x
y

]
) −

[
x
y

]
= 1

13

[
5 −12
−12 −5

] [
x
y

]
so that the standard matrix of S is 1

13

[
5 −12
−12 −5

]
. Since ST =

TS = T the standard matrices of ST , TS and T are the same.

(b) Since S(
[

3
−2

]
) = T (

[
3
−2

]
) =

[
3
−2

]
) and S(

[
2
3

]
) = −

[
2
3

]
, T (

[
2
3

]
) = 0 we see that the eigenvalues of S are

−1, 1 and the eigenvalues of T are 0, 1.
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10. (a) The characteristic polynomial of A is

det(λI −A) =
∣∣∣∣
λ− 3 −1 −1
−1 λ− 3 −1
−1 −1 λ− 3

∣∣∣∣ =
∣∣∣∣
λ− 3 −1 −1
−1 λ− 3 −1
0 2− λ λ− 2

∣∣∣∣ = (λ− 2)
∣∣∣∣
λ− 3 −1 −1
−1 λ− 3 −1
0 −1 1

∣∣∣∣

= (λ− 2)
∣∣∣∣
λ− 3 −2 −1
−1 λ− 4 −1
0 0 1

∣∣∣∣ = (λ− 2)(λ2 − 5λ + 10) = (λ− 2)2(λ− 5)

which shows that the eigenvalues are 2, 5.

(b) The eigenspace for the eigenvalue 2 is null(2I − A) which is the solution space of x1 + x2 + x3 = 0 which
has (1,−1, 0)T , (1, 0,−1T ) as basis. An orthogonal basis for this eigenspace is (1,−1, 0)T , (1, 1,−2)T . The
eigenspace for the eigenvalue 5 has (1, 1, 1)T as basis. The orthonormal matrix

P =




1/
√

2 1/
√

6 1/
√

3
−1/

√
2 1/

√
6 1/

√
3

0 −2/
√

6 1/
√

3




has the property P−1AP = PT AP =




2 0 0
0 2 0
0 0 5


.

11. (a) Applying the Gram-Schmidt process to u1 =




1
0
1
0


, u2 =




−1
2
0
1


, u3 =




1
1
1
1


, we get v1 = u1,

v2 = u2 − < u2, v1 >

< v1, v1 >
v1 =




−1
2
0
1


 +

1
2




1
0
1
0


 =

1
2




−1
4
1
2


 ,

v3 = u3 − < u3, v1 >

< v1, v1 >
v1 − < u3, v2 >

< v2, v2 >
v2 =




1
1
1
1


−




1
0
1
0


−

3
11




−1
4
1
2


 =

1
11




3
−1
−3
5


 .

Hence 1√
2




1
0
1
0


, 1√

22




−1
4
1
2


, 1√

44




3
−1
−3
5


 is an orthonormal basis for W .

(b) We have W⊥ = Null(




1 0 1 0
−1 2 0 1
1 1 1 1


 = Null(




1 0 0 1
0 1 0 1
0 0 1 −1


) = Span(




1
1
−1
−1


).
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