MATH 133: Vectors, Matrices and Geometry

Solution to Written Assignment 5

Solution. This problem uses the fact that if A_1, A_2, \dots, A_p are the columns of A and $X = [x_1, x_2, \dots, x_p]^T$ then

$$AX = x_1 A_1 + x_2 A_2 + \dots + x_n A_n$$
.

- (a) The j-th column of AB is AB_j , where B_j is the j-th column of B. Thus the columns of AB are linear combinations of columns of A which implies that the column space of AB (the span of the columns of AB) is contained in the column space of A (the span of the columns of A).
- (b) Since $\operatorname{col}(AB) \subseteq \operatorname{col}(A)$ by (a), we have $\operatorname{rank}(AB) = \dim \operatorname{col}(AB) \le \dim \operatorname{col}(A) = \operatorname{rank}(A)$. We also have $\operatorname{rank}(AB) = \operatorname{rank}((AB)^T) = \operatorname{rank}(B^TA^T) \le \operatorname{rank}(B^T) \le \operatorname{rank}(B)$.
- (c) It suffices to show BC = I implies that col(AB) = col(A). If $Z \in col(A)$ then Z = AY for some $Y \in \mathbb{R}^p$. But then Z = AY = ABCY = AB(X) where X = CY which shows that $Z \in col(AB)$. Thus $col(A) \subseteq col(AB)$ and we are done by (a).
- $\text{(d) If } A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \text{ then } AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ B^2 = 0 \text{ and } \operatorname{rank}(AB) = \operatorname{rank}(A) = 1.$

Bonus Problem.

(a) If I_1, I_2 are the columns of the identity 2×2 matrix I then columns C_1, C_2 of C satisfy $BC_i = I_i$. Solving these equations, we find a solution

$$C = \begin{bmatrix} 3 & -2 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

(b) We have $\operatorname{rank}(B) = p \iff \operatorname{col}(B) = \mathbb{R}^p \iff BX = Y$ is solvable for X for any Y in \mathbb{R}^p by the statement we made at the beginning. If BX = Y is solvable for any Y in \mathbb{R}^p then, taking for Y the columns of the identity $p \times p$ matrix, we find as solutions the columns of a matrix C with BC = I. Conversely, if BC = I and $Y \in \mathbb{R}^p$ is given then X = CY satisfies BX = Y.