Audio recording started: 10:06 AM Tuesday, October 28, 2003

A function $T: \mathbb{R}^N \to \mathbb{R}^m$ which arrights to each vector u in \mathbb{R}^n a vector T(u) en \mathbb{R}^m in said to be a linear transformation if T(au+bv) = aT(u)+bT(v)

Example If A is an $m \times n$ matrix then you can defene a linear transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ as follow: $T_A(X) = AX$

where we write the rectors of Rand Ru as Column enatrice It is benear since

$$T_A(aX+bY) = A(aX+bY) = aAX+bAY$$

$$= aT_A(x) + bT_A(Y)$$

Example (1)
$$A = \begin{bmatrix} 123 \\ 101 \end{bmatrix} \times \in \mathbb{R}^3$$

$$T_A(x) = Ax = \begin{bmatrix} 123 \\ 101 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2y+3y \\ x+3 \end{bmatrix} \in \mathbb{R}^2$$

$$T_A(x,y) = (x+2y+3y) \xrightarrow{x+3} x+3$$

(2)
$$A = \begin{bmatrix} 12 \\ 21 \end{bmatrix}$$
 $T_A : \mathbb{R} - \mathbb{R}$ $T_A = \begin{bmatrix} 12 \\ 21 \end{bmatrix} \begin{bmatrix} 12$

of T:R" -1R", S:R"->R" ene linear then their composition SoT defined by $S \circ T(x) = S(T(x))$ SoT es leven sens SoT (a 4+6 v) = S (T (a 4+6 v)) $= S(\alpha T(u) + b T(v))$ = a S(T(u)) + b S(T(v))= a SoT(a) + b SoT(v) of TA: R" -> R", TB: R" -> RP $T_{\star}(x) = A \times , T_{B}(Y) = B Y$ $T_{B} \circ T_{A}(x) = T_{B}(T_{A}(x)) = B(Ax) = (BA)X$ = TBA Any leven transf of R into R" in the form TA for som man matrix A. Indeed $x = x_1 e_1 + \dots + x_n e_n$ $e_i = \begin{bmatrix} 0 \\ i \\ 0 \end{bmatrix}$ if X & The con withen so $T(x) = x, T(e_i) + \cdots + x_n T(e_n)$

Lecture16 Page 2

of we let T(Pi) = Ai and tel A be

the man matrix whose columns are Any Am then T(x) = AX, is. T = TA. The matrix A is called the standard matrix of T. If y_1, y_2, y_n is a torus for \mathbb{R}^n then $X \in \mathbb{R}^n$ can be written

 $\chi = q_1 2 l_1 + q_2 q_2 + \dots + q_u q_n$

when an ingent an uniquely determined by X (these are the coord of X w.r.t. U,,, un)

 $T(x) = a_1 T(u_1) + q_2 T(u_2) + \dots + q_n T(u_n)$

(w.r.t = with respect to) So T is completely determined by its effect on a boris

Example: Given a linear transformtion $T:\mathbb{R}^2 \to \mathbb{R}^2$ with T([2]) = [1], T[3] = [2] find the standard matrix of T.

 $\begin{bmatrix} 7 \\ 3 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad 2\alpha + 3b = 3$ $b = y - 2x, \quad \alpha = x - b = 3x - y$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

T([3]) = 3 + ([2]) - 2 + ([3]) = 3 [1] - 2 [2] = [-1]

$$T(\left[\begin{array}{c}1\\1\end{array}\right]) = T\left(-\left[\begin{array}{c}1\\2\end{array}\right] + \left[\begin{array}{c}1\\3\end{array}\right]\right)$$

$$= -T\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) + T\left(\left[\begin{array}{c}1\\3\end{array}\right]\right)$$

$$= -\left[\begin{array}{c}1\\1\end{array}\right] + \left[\begin{array}{c}2\\1\end{array}\right] = \left[\begin{array}{c}1\\0\end{array}\right]$$
Therefore the Standard matrix of T on
$$A = \begin{bmatrix}-1\\1\\0\end{bmatrix}$$
i.e.
$$T\left(\left[\begin{array}{c}1\\3\end{array}\right]\right) = \begin{bmatrix}-1\\1\\0\end{bmatrix} \begin{bmatrix} x\\3\end{bmatrix} = \begin{bmatrix}-x+y\\x \end{bmatrix}$$

$$T\left(x,y\right) = \left(-x+y\right,x\right)$$

If u_{13} , u_{1n} banish R end v_{13} , v_{13} are vectors in R then there is a tenique level transformation $T:R' \to R''$ such that $T(u_1) = v_1$. Indeed, if $u = a_1u_1 + ... + a_nu_n$ then define $T(u) = a_1v_1 + ... + a_nv_n$. Then $T(u_1) = v_1$ and T is linear for if $v = b_1u_1 + ... + b_nu_n$ then $T(a_1 + b_3) = T((a_1 + b_3)u_1 + ... + (a_n + b_n)u_n)$ $= (a_1 + b_3)v_1 + ... + (a_n + b_n)v_n$ $= a(a_1v_1 + ... + a_nv_n) + b(b_1v_1 + ... + b_nv_n)$ $= a(a_1v_1 + ... + a_nv_n) + b(b_1v_1 + ... + b_nv_n)$ $= a(a_1v_1 + ... + a_nv_n) + b(b_1v_1 + ... + b_nv_n)$

Geometric Examples of Linear Transformations O Rotation about the origin in the plane TR2 clockwise through an angle Claim Ro lenean $R_{\theta}([0]) = [ni\theta], R_{\theta}[0] = [-ni\theta]$ is standard matrix of $R_{\theta} = [ni\theta]$ in $[ni\theta]$ $R_{0}([y]) = [x_{0} - x_{0}](x) = [x_{0} - x_{0}](x) = [x_{0} - x_{0}](x)$ Ro(x,y)=(x00-y000,2-04y006) $\begin{array}{ll}
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,2} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,2} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,2} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,2} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,2} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,2} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,2} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,1} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,1} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1+\theta_{2}} &= \mathbb{R}_{0,1} \circ \mathbb{R}_{0,1} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1} &= \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \\
\mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1} \otimes \mathbb{R}_{0,1}$

2 Reflection in the line 1: ax+by=0

Let P(y,y) = orthogonul grojection $\frac{(x,y)}{(x,y)} = \text{orthogonul grojection}$ $\frac{(x,y)}{(x,y)} = (x,y) \cdot \frac{(-b,a)}{a^2+b^2} (-b,a)$

 $= \left(\frac{5^2}{a^2+b^2} \times -\frac{ab}{a^2+b^2} \times \frac{-ab}{a^2+b^2} \times +\frac{a^2}{a^2+b^2} \right)$

Let Q = orthog. projection on the line l':-bx+ay=0 Then $Q(x,y) = (\pi,y) \cdot \frac{(\alpha,b)}{\alpha^2 + b^2} (\alpha,b)$ $(x,y) = P(x,y) + Q(x,y) \Rightarrow P(x,y) = (x,y) - Q(x,y)$ Exercise. Show T linear and find standard matrix of T

Example:
$$l: x-y=0$$

 $T(x,y) = (x,y) - 2(x,y) \cdot \frac{(1,-1)}{2}(1,-1)$
 $= (x,y) - (x-y,y-x) = (y,x)$

Def. It T: R" -> R" is linear then a non-zero vector u∈R" is said to be an eigenvector of Tif T(u) = cu for some scalar c. The sealor c is called the eigenvalue of the ligen vector U. Example Let T: R2 > R2 be the linear transfound on $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ y \end{bmatrix}$

Then [y] + [o] is an eigenvector of Ti

$$\begin{bmatrix} 1^2 \\ 21 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} = c \begin{bmatrix} x \\ y \end{bmatrix}$$
 for some scalar c

 $ie \begin{bmatrix} x+2y \\ 2x+y \end{bmatrix} = \begin{bmatrix} ex \\ ey \end{bmatrix}$

or aguivalently,

$$x+2y=c\times$$

$$2x+y=cy$$

which we can write

$$(1-c)x + 2y = 0$$

 $2x + (1-c)y = 0$

Since (x,y) is a non-zero solution the coefficient matrix is not invertible and so its determinant

$$\begin{vmatrix} 1-c & 2 \\ 2 & 1-c \end{vmatrix} = 0$$

 $\Rightarrow (1-c)^{2}-4-0 \Rightarrow c^{2}-2c-3-0 \Rightarrow (c-3)(c+1)=0$ \Rightarrow c=-1 or 3.

If c = -1 then (x, y) = a(1, -1) and if c=3 then (x,y) = a(1,1)

=> [-1] eigenvector of T with eigenalue -1 [] eigenvector of T with eigenvalue 3