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Abstract

Brain mapping data have been modeled as Gaussian random fields, and local in-
creases in mean are detected by local maxima of a random field of test statistics derived
from this data. Accurate P-values for local maxima are readily available for isotropic
data based on the expected Euler characteristic of the excursion set of the test statistic
random field. In this paper we give a simple method for dealing with non-isotropic
data. Our approach has connections to the Sampson and Guttorp (1992) model for
non-isotropy in which there exists an unknown mapping of the support of the data to a
space in which the random fields are isotropic. Heuristic justification for our approach
comes from the Nash Embedding Theorem. Formally we show that our method gives
consistent unbiased estimators for the true P-values based on new results of Taylor and
Adler (2003) for random fields on manifolds which replace the Euclidean metric by the
variogram. The results are used to detect gender differences in the cortical thickness
of the brain, and to detect regions of the brain involved in sentence comprehension
measured by fMRI.

1 Introduction

Our motivation comes from a study by Lerch and Evans (2005) on cortical thickness of

n = 321 normal adults measured by magnetic resonance imaging (MRI). The aim is to

detect points s of the brain S where cortical thickness Yi(s) on subject i, i = 1, . . . , n,

is correlated with an independent variable such as age or gender (we shall concentrate on

gender). A similar study just published in Nature (Shaw et al. 2006) relates cortical thickness

to IQ in n = 307 children and adolescents. To do this, cortical thickness was first smoothed

∗Jonathan E. Taylor is Associate Professor, Stanford University, Stanford CA 94305 (email:
jonathan.taylorstanford.edu); and Keith J. Worsley is Professor, McGill University, Montreal QC H3A2K6
Canada (email: keith.worsleymcgill.ca). This work was partially supported by NSF, NSERC and FQRNT.
The authors thank the referees for helpful comments.

1



(a) (b)

(c) (d)

Figure 1: Cortical thickness (mm) of n = 321 normal adults on the average cortical surface, as
defined in Section 6.1. (a) Smoothed cortical thickness of a single subject; (b) average cortical
thickness of the 163 males minus the 158 females, adjusted for a linear effect of age; (c) pooled
within-gender standard deviation of the difference in (b), adjusted for age, 318 df; (d) two-sample
T-statistic, adjusted for age, (b) divided by (c), 318 df.

along the surface (Chung et al. 2005). After removing a linear effect of age, the usual two-

sample (male-female) T-statistic was calculated at each point on the cortical surface to give

a smooth T-statistic random field with 318 degrees of freedom - see Figure 1. We can detect

local differences in cortical thickness by thresholding this random field at a suitably high

value. The problem we shall address in this paper is where exactly to set this threshold to

control the false positive rate to say 0.05.

In general we can set up a linear model for subject i, i = 1, ..., n:

Yi(s) = xiβ(s) + Zi(s)σ(s), (1)

where xi is a p-vector of known regressors, and β(s) is an unknown p-vector of coefficients.

The errors Z1(s), . . . , Zn(s) are independent random fields each with the same distribution as

Z(s), a zero mean, unit variance Gaussian random field, and Var(Yi(s)) = σ(s)2 is unknown.

We can now detect how the regressors are related to data at point s by testing contrasts
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in β(s). Classical test statistics for these contrasts evaluated at each point s then form a

random field T (s), such as the two-sample T-statistic in Figure 1(d).

We suspect that non-zero contrast is confined to a small number of localized regions and

the contrast in the rest of the brain is zero. It is not hard to show that if the spatial pattern of

the change matches the spatial correlation function of the errors, then the spatial maximum

of T (s) is the likelihood ratio test for the null of zero contrast everywhere, provided σ(s) is

known (Siegmund and Worsley 1995). In essence this is just the Matched Filter Theorem

from signal processing, which states that to best detect a signal added to white noise, the

data should be smoothed by a filter with the same shape as the signal (Rosenfeld and Kak

1982). Thresholding T (s) at that threshold which controls the P-value of its maximum should

then be powerful at detecting changes, while controlling the false positive rate outside the

changed region to something slightly smaller than the nominal P-value. This is because the

non-activated region is slightly smaller than the brain, and the P-value of the maximum over

a region increases with region size. Our main problem is therefore to find the P-value of the

maximum of random fields of these test statistics.

To give the reader some idea of the rest of the paper, here is our final result for the

D = 1 dimensional case where S ⊂ R is an interval, and a one dimensional random field of

T-statistics with very high degrees of freedom, so that it is effectively a Gaussian random

field with zero mean and unit variance under the null. The P-value approximation, based

on upcrossings (Rice 1945), improved Bonferroni inequalities (Hunter 1976; Worsley 1982;

Efron 1997), Euler characteristics (Adler 1981), or the Weyl-Hotelling tube formula (Sun

1993; Sun and Loader 1994), is

P
(

max
s∈S

T (s) ≥ t

)
≈ P(T (s) ≥ t) +

∫

S

Var(Ż(s))1/2ds · exp(−t2/2)/(2π), (2)

where dot represents spatial derivative with respect to s.

The main problem of this paper is to estimate the coefficient

L1(S) =

∫

S

Var(Ż(s))1/2ds, (3)

known as the Lipschitz-Killing curvature (LKC) of S. To do this we suppose that the data

Yi(s) are finely sampled at a large set of N points P = {s1 < s2 < · · · < sN} ⊂ S. For each

j let r(sj) be the n-vector of least squares residuals form the linear model (1). Specifically, if
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Y (sj) = (Y1(sj), . . . , Yn(sj))
′ is the n× 1 vector of observations at sj and X = (x′1, . . . , x

′
n)′

is the n× p design matrix, then

r(sj) = Y (sj)−X(X ′X)−1X ′Y (sj). (4)

Then let

u(sj) = r(sj)/||r(sj)|| (5)

be the n-vector of normalized residuals. Our estimator of the LKC in this 1D case is

L̂1(S) =
N−1∑
j=1

||u(sj+1)− u(sj)||. (6)

The rest of the paper is laid out as follows. In Section 2 we show how to generalize (2) to

higher dimensions D > 1 and non-Gaussian test statistics T (s) such as T- and F- statistics

for the special case where the random field is isotropic. We generalise this to non-isotropic

random fields in Section 3. Section 4 gives our main result, a consistent unbiased estimator

of the LKC, with special emphasis on the 3D case in Section 5. We give two applications

in Section 6, first to the 2D cortical thickness in Figure 1, then to 3D functional magnetic

resonance imaging data.

2 P-value of the maximum of an isotropic random field

Generalizing (2) to higher dimensions, a very accurate approximation to the P-value of the

maximum of a smooth, isotropic random field T (s), s ∈ S ⊂ RD, at high thresholds t, is the

expected Euler characteristic (EC) ϕ of the excursion set:

P
(

max
s∈S

T (s) ≥ t

)
≈ E(ϕ{s ∈ S : T (s) ≥ t}) =

D∑

d=0

µd(S)ρd(t), (7)

where µd(S) is the d-th intrinsic volume of S, and ρd(t) is the d-th EC density of the random

field above t (Adler 1981; Worsley 1995; Adler 2000; Taylor et al. 2005). Formula (7) also

holds for non-isotropic fields that are functions of Gaussian fields which we shall cover in

Section 3. For example, in 3D the EC of a set is given by

ϕ = ]blob− ]handles + ]hollows
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(d) (e)

Figure 2: (a) The Euler characteristic of a 3D set, here a ball and a filled torus, is ϕ = ]blobs −
]handles + ]hollows = 2 − 1 + 0 = 1, or, if we fill the set with a fine rectilinear mesh, then
ϕ = ]points − ]edges + ]faces − ]cubes = 55 − 90 + 40 − 4 = 1. (b) The excursion set of a 3D
isotropic Gaussian random field with mean zero and variance one above a threshold t = −2; the
set contains isolated hollows that each contribute +1 to give ϕ = 6 with E(ϕ) = 6.7 from (7); (c)
at t = 0 the handles dominate, each contributing −1 to give ϕ = −15 with E(ϕ) = −20.0; (d)
at t = 2 the handles and hollows disappear, leaving isolated blobs, each contributing +1 to give
ϕ = 14 with E(ϕ) = 16.1; (e) at t = 3 only one blob remains (containing the maximum value of
3.51) to give ϕ = 1 with E(ϕ) = 2.1. At very high thresholds E(ϕ) is a good approximation to the
P-value of the maximum.

(see Figure 2(a)). A blob is a connected component (such as a golf ball), a handle needs one

cut to open it (such as a cup handle), and a hollow is an interior hole not connected to the

outside (such as the interior of a tennis ball). It can be evaluated numerically for a subset

of a rectilinear mesh by

ϕ = ]points− ]edges + ]faces− ]cubes (8)

where, for example, a cube is a set of 8 adjacent mesh points, differing by one mesh step

along each axis, and all inside the set (Figure 2(a)). This method was used to calculate the

EC of the excursion sets in Figure 2(b-e). For a full explanation of why this method works,

see Adler (1977) and Adler (1981), Theorem 5.5.1.

2.1 Intrinsic volumes in 3D

Formal definitions of intrinsic volume are given in Appendix A.1, but for D = 3, the case

most often encountered in brain imaging and the case considered here in detail in Section 5,
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the intrinsic volumes are
µ0(S) = ϕ(S)

µ1(S) = 2 caliper diameter(S)

µ2(S) = 1
2
surface area(S)

µ3(S) = volume(S).

(9)

For a convex set, the caliper diameter is the distance between two parallel tangent planes

to the set, averaged over all rotations. For the example in Figure 1, regarded as a subset of

R3, µ0(S) = 2 (since it is a hollow surface), µ1(S) = 0 (the inside curvature cancels with the

outside curvature, see Appendix A.1.3), µ2(S) is the surface area of S (half from the inside,

half from the outside), and µ3(S) = 0.

Note that for S an M -dimensional manifold embedded in a higher dimensional space

D ≥ M , the higher dimensional intrinsic volumes are all zero, so that the summation in (7)

need only go as far as M , the dimensionality of the manifold, rather than the dimensionality

of the embedding space.

2.2 T-statistic EC densities up to 3D

We shall assume that the error Z(·) is a unit Gaussian random field (UGRF), which we define

as a Gaussian random field with zero mean, unit variance, and identity variance matrix of its

vector of spatial derivatives, that is Var(Ż(s)) = ID×D, the D×D identity matrix (henceforth

dot represents ∂/∂s). Then the first four EC densities of a T-statistic random field T (s) with

ν = n− p degrees of freedom are

ρ0(t) =

∫ ∞

t

Γ
(

ν+1
2

)

(νπ)1/2Γ
(

ν
2

)
(

1 +
u2

ν

)−(ν+1)/2

du →
∫ ∞

t

(2π)−1/2 exp(−u2/2)du

ρ1(t) = (2π)−1

(
1 +

t2

ν

)−(ν−1)/2

→(2π)−1 exp(−t2/2)

ρ2(t) = (2π)−3/2 Γ
(

ν+1
2

)
(

ν
2

)1/2
Γ

(
ν
2

) t

(
1 +

t2

ν

)−(ν−1)/2

→(2π)−3/2t exp(−t2/2)

ρ3(t) = (2π)−2

(
ν − 1

ν
t2 − 1

)(
1 +

t2

ν

)−(ν−1)/2

→(2π)−2(t2 − 1) exp(−t2/2)

(10)

as ν →∞, to give EC densities for the UGRF itself. Note also that we do not need to specify

anything about the spatial correlation function h(s) of the UGRF Z other than its second

derivative at the origin: −ḧ(0) = Var(Ż(s)) = ID×D. Note that any stationary Gaussian
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random field can be transformed to a UGRF by appropriate linear transformations of its

domain and range. In particular, if Var(Ż(s)) = λID×D for some scalar λ, then ρd(t) is

multiplied by λd/2.

Formal definitions of EC densities for higher dimensions and for other random fields built

from UGRF’s, such as the F-statistic random field, are given in Appendix A.2.

2.3 Accuracy of the expected EC as a P-value approximation

A heuristic explanation for why we use the expected EC is as follows. We present the

heuristic in 3D, but in principle, it works in all dimensions. If the threshold t is high, the

handles and hollows of the excursion set tend to disappear, leaving a set of isolated blobs,

each containing one local maximum, so that the EC then counts the number of connected

components (Figure 2(d)). At very high thresholds the excursion set is mostly empty with an

EC of 0, or occasionally, when maxs∈S T (s) ≥ t, it will contain just one connected component

with an EC of 1 (Figure 2(e)). Thus at these high thresholds the expected EC is a good

approximation to the P-value of maxs∈S T (s). The beauty of the EC is that there is an exact

expression for its expectation for all thresholds.

Moreover the approximation (7) is astonishingly accurate when T (s) is Gaussian, and S

is either convex or has smooth boundary, in which case

E(ϕ{s ∈ S : T (s) ≥ t}) = P(T (s) > t) +
(
c0 + c1t + · · ·+ cD−1t

D−1
)
exp(−t2/2)

for some constants c0, . . . , cD−1 (see (36) in the Appendix). Since P(T (s) > t) = O(1/t) exp(−t2/2),

it might be thought that the error in the approximation (7) is simply the next term down,

that is O(1/t2) exp(−t2/2). In fact the error is exponentially smaller than this: exp(−αt2/2)

for some α > 1 which is related to the curvature of the boundary of S and Var(T̈ (s)) (Taylor

et al. 2005). This means that there are in effect no further polynomial terms in the expan-

sion, and that the expected EC captures essentially all of the P-value. The exponentially

smaller error is only known for the Gaussian case and in other cases, e.g. a T field, is both

unproven and probably inappropriate.
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3 The non-isotropic case: Lipschitz-Killing curvature

All brain imaging data is in fact non-isotropic, though isotropy can be a good approximation

for e.g. positron emission tomography data (Worsley et al. 1992). For example, the cortical

thickness data is defined on a curved 2D manifold embedded in 3D, so the very notion of

isotropy does not even apply, except perhaps in a local sense. What we need is a theory to

cover the non-isotropic case, and, in general, the case of random fields on manifolds.

This has been accomplished in Taylor (2006) for the special case where T (s) is a function

of independent Gaussian random fields each with the same distribution as Z(s). In a nutshell,

the EC densities are first evaluated for UGRF data (assuming Var(Ż(s)) = ID×D), then the

intrinsic volumes µd(S) are replaced by Lipschitz-Killing curvatures (LKC) Ld(S, Λ), where

Λ = Λ(s) = Var(Ż(s)). (11)

Thus the LKC incorporates information from the local correlation function of the underlying

Gaussian random fields as well as the search region S. In effect the spatial correlation

structure of the data is transferred from the EC density to the LKC.

We now re-state the P-value approximation (7) for the non-isotropic case where T (s) is

a function of independent Gaussian random fields each with the same distribution as Z(s):

P
(

max
s∈S

T (s) ≥ t

)
≈ E(ϕ{s ∈ S : T (s) ≥ t}) =

D∑

d=0

Ld(S, Λ)ρd(t), (12)

where ρd(t) is evaluated as in Appendix A.2 but with Z(s) replaced by a UGRF. Note

that in this function of Gaussian case there is no rigorous result for the accuracy of the

approximation.

3.1 Intuitive idea of LKC: warping to isotropy

Before giving a definition of LKC, we shall give a brief idea of how it arises. Note first

that the domain of the random fields could be warped or deformed by a one-to-one smooth

transform without fundamentally changing the nature of the problem. For example, we could

‘inflate’ the average cortical surface in Figure 1 to a sphere and carry out all our analysis on

the sphere - some neuroscience researchers actually do this (Fischl et al. 1999; Hurdal and

Stephenson 2004). Or we could use any convenient shape: the maximum of the T-statistic
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would be unchanged, and so would the Euler characteristic of the excursion set. Of course

the correlation structure would change, but then so would the search region, in such a way

that the effects of these on the LKC, and hence the expected Euler characteristic, cancel -

see Section 3.2.

This suggests that we could try to choose the warping of the parameter space S so that

the random fields are isotropic, then use the isotropic theory above. In other words, we want

to find a deformation f : S̃ → S so that Z(f(s̃)) is isotropic in s̃ ∈ S̃. This approach is

reminiscent of that of Sampson and Guttorp (1992) for the analysis of geostatistical data.

First of all, is this possible? In general the answer is no, but at least one could try to

achieve local isotropy by ensuring that neighbouring values are equally correlated at equal

distances in all directions. In other words, we might try to use local multi-dimensional scaling

to find new points s̃ so that for any two neighbouring points s̃1, s̃2

||s̃1 − s̃2||2 ≈ Var(Z(f(s̃1))− Z(f(s̃2)))

(see Figure 3 and Section 6.1). The fact that the Euler characteristic has a local definition

(by Morse theory and (8)) suggests that local isotropy, and not global isotropy, is sufficient

for our purposes. This will be confirmed in Section 3.2.

Again local isotropy can only be achieved approximately (see Figure 3(c)), but, as noted

by Sampson and Guttorp (1992), better local isotropy might be achieved by using more

dimensions (say 4 or 5) for s̃. In other words, we could embed S̃ in a higher dimensional

Euclidean space R eD. As already noted in Section 2.1, this does not increase the number of

terms in our P-value approximation (7) because the higher dimensional intrinsic volumes are

all zero.

How many dimensions are needed? Sampson and Guttorp (1992) noted that if n i.i.d.

random fields Zi(s) are available as in the linear model (1), then exact sample isotropy could

be achieved by replacing the coordinates of s ∈ RD by s̃ = (Z1(s), . . . , Zn(s))/
√

n ∈ Rn, in

the sense that

||s̃1 − s̃2||2 = V̂ar(Z(f(s̃1))− Z(f(s̃2))) =
n∑

i=1

(Zi(s1)− Zi(s2))
2/n

(see Figure 4). We shall use this idea of replacing the coordinates by the data when we

construct a sample estimator of LKC in the next section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The same data as in Figure 1, showing part of the triangular mesh in the first three
images. (a) Standard deviation of the derivative of the residuals - it varies considerably across
the brain, indicating local non-isotropy; (b) warping of the data to approximate local isotropy by
multiplying the edge lengths by the standard deviation of the derivative in (a) - note that regions
with low values in (a) are shrunk to make them rougher, and regions with high values are expanded
(by folding) to make them smoother; (c) standard deviation of the derivative recalculated using
the new edge lengths (note the change in colour scale) - the values are almost constant, indicating
that the data is almost locally isotropic (exact local isotropy could be achieved in 5 dimensions,
by the Nash Embedding Theorem); (d) T-statistic from Figure 1 on the ‘isotropic’ mesh; (e) T
thresholded at the P = 0.05 threshold t = 4.43 determined from (7) using the estimated LKC of
the cortical surface from (19), well approximated by the intrinsic volumes of the ‘isotropic’ mesh;
(f) the same as in (e) but back on the average cortical surface.

However a moment’s reflection will show that we need to be cautious. If we let the

number of embedding dimensions D̃ become infinite (e.g. as the sample size increases), then
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Figure 4: Example of warping S (left: square, M = D = 2) to sample isotropy by replacing
the coordinates of s ∈ S by the random fields Z(S)/

√
n, where Z(s) = (Z1(s), . . . , Zn(s)) (right:

n = D̃ = 3). Our proposed estimator of the LKC of S is the intrinsic volume of Z(S)/
√

n.
Note that Z(S) self-intersects because n ≤ 2M ; n > 2M avoids this, with probability 1. These
self-intersections are ignored in calculating the intrinsic volumes.

the theory behind the P-value approximation (7) might break down. Fortunately this is not

a concern since the Nash Embedding Theorem says that the number of dimensions required

to achieve exact local isotropy is finite, and indeed D̃ ≤ M + M(M + 1)/2 will suffice.

Understanding how the Nash theorem works here is not a simple matter since we have said

nothing about the Riemannian structure of the non-isotropic situation.

So in principle we can transform the parameter space S to local isotropy, then work out

its intrinsic volumes, then use them in the P-value approximation (7). These new intrinsic

volumes are in effect the LKC’s of S.

3.2 Formal definition of LKC: variogram as metric

Taylor and Adler (2003) approach this in a different way. Instead of warping the parameter

space to achieve local isotropy, they replace the Euclidean metric locally by the variogram,

and define local distance between two points s1, s2 ∈ S by

Var(Z(s1)− Z(s2))
1/2.

The intrinsic volumes in this new metric become the LKC’s. This time the spatial correlation

structure is used in the metric rather than in the warping. As suggested by the note after (10)

(that the expected EC depends on the spatial correlation function only through its second
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derivative at the origin), it turns out that the LKC only depends on the local metric or

short-range spatial correlation, or equivalently the variance of the spatial derivative Λ(s) =

Var(Ż(s)). Readers with some background in Riemannian geometry and some of the material

in Taylor and Adler (2003) and Adler and Taylor (2006) will note that Λ(s) is just the matrix

of the afore-mentioned Riemannian metric on S in the natural basis ∂/∂s. We thus write

Ld(S, Λ) to denote the d-th LKC of the set S covered by the Gaussian random field Z(s).

In the isotropic case

Ld(S, ID×D) = µd(S).

It is straightforward to show that if A is a spatially constant non-singular matrix then

Ld(S,AΛA′) = Ld(A
−1S, Λ) = Ld(S, Λ)/ad

if A = aID×D, where a is a scalar, and where A−1S = {A−1s : s ∈ S}. To simplify notation,

we will sometimes drop the dependence of the LKC on the variance of the derivative of Z

and write Ld(S) = Ld(S, Λ). We note in passing that Ld(S) then satisfies the additivity

property (18).

3.3 The ‘volume’ term or resels

The d-th LKC of S, and the one that makes the largest contribution to the P-value (12), is

the ‘volume’ term

LD(S) =

∫

S

det(Λ(s))1/2ds, (13)

a straightforward generalization of the LKC (3). In the neuroimaging literature,

reselsD(S) = (4 log 2)−D/2LD(S) (14)

is known as the resels (resolution elements) (Worsley et al. 1996). The basis for this nomen-

clature is as follows. Suppose Z(s) is modeled as Gaussian white noise convolved with an

isotropic Gaussian-shaped spatial filter with Full Width at Half Maximum F . Then the D

dimensional resels of S is the number of filters, or ‘resolution elements’, that fill S:

reselsD(S) = |S|/FD,

where | · | is volume or Lebesgue measure. From (13) it can be shown that

LD(S) = (4 log 2)D/2|S|/FD
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which leads us to the general definition (14) in the non-isotropic case. Intuitively, the more

resels in S, the more “effectively independent” observations are in S, so the higher the

probability that the random field will exceed a given threshold, as seen in (12).

4 Sample estimator of LKC

Our motivation through the idea of warping to local isotropy is not wasted because we shall

use it in this section to derive a sample estimator of LKC.

4.1 S a simplicial complex

In practical applications the data Yi(s) are always measured at a finite set of points P =

{s1, . . . , sN} ⊂ S. What we are really after is the P-value of maxs∈P T (s), which we ap-

proximate by the P-value of maxs∈S T (s). Clearly this approximation is always conservative

(since P ⊂ S), but still accurate provided P is a fine enough subsampling of the points in S.

The points in P can be joined to form a simplicial complex S, defined as a set of subsets

of P with the property that if a particular subset F is in S, then so are all the subsets of F
(Naiman and Wynn 1992, 1997) - see Figure 5(a). In the 3D case, a tetrahedral mesh is a

simplicial complex if, for every tetrahedron in the mesh, all its triangles, edges and vertices

are also in the mesh. With each simplex F ∈ S we associate a subset F of Euclidean space

consisting of the (closed) convex hull of the points in F . With this convention we assume,

in this section, that S is the union of all the simplices in S.

In general there will be no restrictions on how S is formed, but the accuracy of the

P-value of maxs∈S T (s) as an approximation to maxs∈P T (s) will be best if, for fixed P , S
connects points that are as highly correlated as possible. This will encourage Λ(s) to be

small, so that the LKC’s of S are small, resulting in a smaller P-value (12).

4.2 The proposed estimator

Our aim is to give a sample estimator of the LKC of S. For this purpose we have available

the n-vector of least squares residuals r(s), s ∈ P , from the linear model (1), as defined by

(4). The components of r(s) are zero-mean Gaussian random fields with the same spatial
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Figure 5: (a) Example of a simplicial complex S = {{s1}, {s2}, {s3}, {s4}, {s5}, {s6},
{s1, s2}, {s1, s3}, {s2, s3}, {s2, s4}, {s3, s4}, {s4, s5}, {s1, s2, s3}, {s2, s3, s4}} with D = 2 and P =
{s1, . . . , s6}. F is the triangle associated with the simplex F = {s1, s2, s3}. The union of all the
points, edges and triangles in S is the set S ⊂ R2. (b) Graphical proof of the intrinsic volumes of
a triangle - see Appendix A.1.1.

correlation structure as Z(s). As in (5), define the normalised residuals as

u(s) = r(s)/||r(s)||. (15)

Pursuing the idea of replacing the coordinates by the data, as suggested in the previous

section and Figure 4, our estimator of the LKC of S is the intrinsic volume of the simplicial

complex whose coordinates are the normalised residuals (15). Formally, let P̃ = u(P ) =

{u(s) : s ∈ P} embedded in D̃ = n dimensional Euclidean space, and let S̃ = u(S)

be associated with the simplicial complex whose coordinates are P̃ . Then the estimator is

simply

LKC estimator: L̂d(S) = µd(u(S)), (16)

an idea that was first proposed by Worsley et al. (1999). This equation (16) is probably the

most important of the entire paper. It says that to estimate the LKC, simply replace the

Euclidean coordinates by the normalised residuals, and proceed as if the data were isotropic.

The underlying idea is that u(S) can be thought of as an estimator of S in isotropic

space in the sense that the local geometry of u(S) that is captured by the edge lengths of

the simplicial complex is, on average, the same as the local geometry of S relative to Z(s)

or, equivalently r. By isotropic space we mean that

‖u(s1)− u(s2)‖2 ≈ Var(Z(s1)− Z(s2)) (17)
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so the squared Euclidean (isotropic) distances between points in u(S) are approximately

equal to the variogram.

4.3 A simple expression for calculating the estimator

To calculate the intrinsic volume of a simplicial complex S or S̃ it would seem reasonable to

work out the intrinsic volume of each component of S, then use the additivity rule

µd(A ∪B) = µd(A) + µd(B)− µd(A ∩B) (18)

(see Appendix A.1.4). This would lead to an inclusion-exclusion formula for µd(S). However

a moment’s reflection will show that although this simplifies the calculation, it is still far

too cumbersome. The reason is that we must account not only for the intersection of two

tetrahedra that share a common face, but also the intersection of two or more tetrahedra that

share a common edge or vertex. In other words, there could be a huge number of intersection

terms in such an inclusion-exclusion formula, many of which would simply cancel.

Instead we derive a new result using two classical combinatorial identities involving in-

ternal and external angles (31) known as Sommerville’s identities (Grünbaum 2003). These

identities, their generalizations and the intrinsic volumes of simplicial complexes are studied

by physicists in quantum gravity. This area of study is usually referred to as Regge calcu-

lus in the physics literature (Budach 1989; Cheeger et al. 1984, 1986). The identities lead

directly to the following proposition, which is proved in Appendix A.3:

Theorem 1

µd(S) =
∑

F∈S: dim(F )≥d

(−1)dim(F )−dµd(F ).

The beauty of this result is that we do not need to worry about the intersection of the

simplices: Theorem 1 gives us a breakdown of the intrinsic volume of a simplicial complex

purely in terms of the intrinsic volumes of its components. Using Theorem 1 with S replaced

by u(S), the estimator can be written as

L̂d(S) = µd(u(S)) =
∑

F∈S: dim(F )≥d

(−1)dim(F )−dµd(u(F )). (19)

All that is required are expressions for the intrinsic volumes of simplices. We shall give these

expressions for a tetrahedral mesh in Section 5.2.
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It will be noticed that there is still some cancelation in the breakdown in Theorem 1,

and hence some unnecessary computation in (19). For example, when d = D − 1 all the

surface area terms of the (D − 1)-dimensional simplices cancel with all the surface area

terms of the D-dimensional simplices whenever the former are interior to S, so that only the

exterior surface areas count towards µD−1(u(S)). This is because the (D − 1)-dimensional

intrinsic volume of a D-dimensional set is half its surface area. Since every interior (D− 1)-

dimensional simplex is contained in two adjacent D-dimensional simplices, then their surface

area terms cancel.

It might be thought that interior contributions to other low-order intrinsic volumes also

cancel, as they do for surface area. In other words, the low-order intrinsic volumes of S̃

should only involve the boundary of S. But in general this is not the case. The reason

is simple: if D̃ > D, S is embedded in a higher dimensional space, so the interior of S is

‘exposed’ to become part of the boundary of S̃, as in Figure 4. Thus all simplices of S are

on the boundary of S̃, and potentially contribute to the intrinsic volume of S̃. In particular,

if D = 3 then L̂1(S) has contributions from all simplices in S̃ and these contributions do not

necessarily cancel (Figure 9(a) shows an image of these contributions).

4.4 The ‘volume’ term or resels

The simplest term to work with is the ‘volume’ term L̂D(S) (13) or resels (14), where S is

a union of D dimensional simplices in the simplicial complex S. In practical applications

it usually makes the largest contribution to the P-value approximation (12). From (19) the

volume term is simply the sum of the volumes of the simplices in ‘isotropic’ space:

L̂D(S) = |S̃| =
∑

F∈S : dim(F )=D

|F̃ |. (20)

The volume of a simplex is straightforward. Let u(s) = (u1(s), . . . , un(s))′ be the coordinates

of the point s in ‘isotropic’ space, and let u(s0), u(s1), . . . , u(sD) be the vertices of a D-

dimensional simplex F in isotropic space. Let ej = u(sj) − u(s0) be the edge vectors,

j = 1, . . . , D, and let E = (e1, . . . , eD) be the n × D matrix of edge vectors in isotropic

space. Then

|F̃ | = det(E ′E)1/2/D!. (21)
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4.5 Consistency, bias and variance

In Appendices A.4 and A.5 we prove the following:

Theorem 2 For fixed n and fixed sequence of mesh sizes ∆m indexed by m that decrease to

zero as m →∞, it is possible to construct a random sequence of meshes M∆,m such that for

each d

L̂d(SM∆
)

m→∞→ µd(u(S)), P− a.s..

Further, for fixed n and each d

E (µd(u(S))) = Ld(S).

Remark: For large degrees of freedom ν and large S, the variance of the volume term

of Var(L̂D(S)) is well approximated by

Var(L̂D(S))

LD(S)2
' D(D + 1)πD/2

4νLD(S)
, (22)

in the sense that as ν →∞,

Var(L̂D(S))

LD(S)2
= O(ν−1)

and as some expansion factor c →∞ with ν fixed

Var(L̂D(cS))

LD(cS)2
= O(c−D) = O(LD(cS)−1).

Here cS = {cs : s ∈ S}. Some justification for this result is given in Appendix A.6.

Since the expected EC (12) is a linear combination of LKC’s, this implies that replacing

these LKC’s by our estimator L̂d(S) gives a consistent and unbiased estimator of the expected

EC, and hence the P-value approximation (12). Since the volume term is the dominant one in

evaluating the P-value, (22) implies that the relative error in the estimated P-value decreases

as the square root of the sample size times the volume term.

It is worth contrasting this with a näıve estimator formed as follows. We have at our

disposal ν effectively independent copies of Z(s), namely the residuals ri(s) (to within a

constant). If the test statistic T (s) is a T-statistic and if the degrees of freedom are large,

then we can get a simple non-parametric estimator of the P-value of the maximum of T (s)

by the proportion of maxima of ri(s) (suitably normalized) that exceed the observed T (s).
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This very simple P-value estimator, which makes no assumptions at all about the correlation

structure of the data, has coefficient of variation roughly 1/(Pν), where P is the true (small)

P-value. Contrasting this with (22) based on a random field model, we note that the ratio

of the two is
Var(random field P-value estimator)

Var(näıve P-value estimator)
≈ D(D + 1)πD/2P

4LD(S)
.

In typical 3D applications in brain imaging, L3(S) = 1000 and P = 0.05, this factor is

0.0008, indicating an approximate 35-fold increase in accuracy for the random field model.

However if the data is much smoother, so that L3(S) is much smaller, then the increase in

accuracy would not be as pronounced.

5 The 3D case

There are two reasons for considering the D = 3 case in detail. The first is that most data

is sampled on a rectilinear mesh, and it is not easy to subdivide a rectilinear mesh into

simplices in dimensions higher than 3. The second is that there are no simple workable

expressions for intrinsic volumes of simplices in dimensions higher than 3. For the 3D case,

we will address these two issues in the following sections.

5.1 Constructing a tetrahedral mesh to fill a set with smooth
boundary

The first step, constructing a tetrahedral mesh from a rectilinear mesh, is straightforward.

The ‘cubes’ of eight adjacent points on the rectilinear mesh can be divided into five tetrahedra

in an alternating ‘checker board’ fashion (Figure 6(a)), or into six tetrahedra in an identical

fashion (Figure 6(b)). Generalizing this to higher dimensions is straightforward (de Berg

et al. 1997).

The next problem is how to fit a such a tetrahedral mesh to a smooth set. We illustrate

the problem and the solution for the 2D case in Figure 7. In practice search regions S are

often defined by the set of points where some smooth function f(s) exceeds a threshold f0.

For example in brain imaging, f(s) might be grey matter density, and f0 might be 0.1, so

that our search region S is the set of points with at least 10% grey matter. The smooth

function f(s) is of course only defined at each lattice point, so we interpolate by e.g. tri-linear

interpolation to all points in between.
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(a) (b)

Figure 6: How to divide each ‘cube’ of a rectilinear mesh into (a) 5 tetrahedra in an alternating
fashion; or (b) 6 tetrahedra in an identical fashion, each of equal volume.

There are many ways of triangulating the boundary (or outer surface) ∂S, such as the

‘marching cubes’ algorithm, but filling the interior with tetrahedra is much harder (Shephard

and Georges 1991). We could identify the ‘cubes’ of 8 adjacent voxels that cut ∂S, then devise

a scheme to fill the cut cubes with tetrahedra, by analogy with marching cubes. The hard

part is to get the tetrahedra of one cut cube to match the tetrahedra of the next. Instead it

seems far easier to first fill the lattice with tetrahedra as in Figure 6, then move the lattice

points to ∂S. This is illustrated in Figure 7 for the 2D case, but the principle is the same

for 3D. Specifically, if {s1, s2} is an edge of the initial tetrahedral mesh such that f(s1) < f0

and f(s2) ≥ f0 then the coordinates s1 of the point outside S is moved to

s1w + s2(1− w), where w =
f(s2)− f0

f(s2)− f(s1)
. (23)

The same point may be moved more than once, but the mesh must be fine enough so that

there is always a ‘free’ point to move. Having moved the point, the only remaining task is to

interpolate the data Yi(s) to the new point. This is done by linear interpolation as in (23).

5.2 Intrinsic volumes

Let ˜ denote replacement of Euclidean coordinates by normalised residuals, as used to define

the estimator (16). Once the tetrahedral mesh is determined, the estimators of the LKC’s
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(a) (b)

Figure 7: A smooth boundary (dashed) is filled with triangles by (a) identifying the edges that
cross the boundary, then (b) moving the coordinates of the outside point to the boundary.

are, from Theorem 1:

L̂0(S) = ]points− ]edges + ]triangles− ]tetrahedra,

L̂1(S) =
∑

edges

µ1(ẽdge)−
∑

triangles

µ1( ˜triangle) +
∑

tetrahedra

µ1( ˜tetrahedron),

L̂2(S) =
∑

triangles

µ2( ˜triangle)−
∑

tetrahedra

µ2( ˜tetrahedron),

L̂3(S) =
∑

tetrahedra

µ3( ˜tetrahedron),

(24)

since L0 is the Euler characteristic, which is one for all simplices. For the other intrinsic

volumes,

µ1(edge) = edge length,

µ1(triangle) = 1
2

perimeter length,

µ1(tetrahedron) =
∑

edges

(edge length)× (π − interior angle)/(2π),

µ2(triangle) = surface area,

µ2(tetrahedron) = 1
2

surface area,

µ3(tetrahedron) = volume.

(25)
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Formula (21) allows us to calculate all the intrinsic volumes in (25) except the interior angle

of the tetrahedron, which is calculated as follows. Let

cjk = e′jek − e′je1e
′
1ek/e

′
1e1, 2 ≤ j ≤ k ≤ 3,

where ej = u(sj)− u(s0) is the edge vector in isotropic space, as previously defined in (21).

Then the interior angle along the edge {s0, s1} is

θ = arccos(c23/
√

c22c33). (26)

As already noted after (19), there is some unnecessary computation in (24). All the sur-

face area terms of the tetrahedra cancel with the surface area terms of the triangles whenever

the triangles are inside S (i.e. the intersection of two adjacent tetrahedra). Only the trian-

gles on the outer surface count towards L̂2(S). This is because there is a −1
2
(surface area)

contribution from each of the two tetrahedra on either side of the triangle that cancels with

the (surface area) contribution from the triangle itself.

However in general this is not the case, and in particular it is not the case for L̂1(S),

where the contributions of the edges, triangles and tetrahedra do not necessarily cancel at

interior edges. In fact the contributions of interior edges to L̂1(S) is related to the curvature

of S̃, which we will actually estimate for the example in Section 6.2 (see Figure 9(a)).

If on the other hand S is a triangular mesh, then all the interior contributions do cancel.

In fact when S is homeomorphic to a 2-sphere, so that all edges are interior, then L̂1(S) = 0,

as we shall see next in Section 6.1.

Trying to devise a general way of counting the contributions of each simplex only once is

a daunting task. Instead it seems easier to write computer code for (24), and in general (16),

and work in double precision. This has been implemented as part of FMRISTAT, a Matlab

package for the statistical analysis of fMRI data - see http://www.math.mcgill.ca/keith

/fmristat/#resels.

6 Applications

6.1 Cortical thickness

Before proceeding, it is natural to ask how we know we are properly matching the cortical

thickness at the same anatomical region, in other words, how do we address the issue of
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surface-to-surface registration. This is fully discussed in Lerch and Evans (2005). Briefly,

each brain is linearly transformed to a common stereotaxic reference space, so that overall

brain sizes are equalized. This means that cortical thickness measures are relative to brain

size, not absolute. The white matter, grey matter and cerebrospinal fluid are segmented. The

brain is placed inside a triangulated sphere, which is then ‘shrink-wrapped’ to the grey-white

boundary (the inner cortical surface), while sliding the mesh along the surface to maintain

roughly equal sized triangles. This surface is then expanded out to to the grey-cerebrospinal

fluid boundary, to find the outer cortical surface. The cortical thickness is then measured at

each node on the mid-cortical surface, which then becomes our raw data. No specific surface-

to-surface registration is needed (as in other methods of cortical surface extraction) because

the initial triangular mesh is identical and always positioned around the brain in exactly the

same way. This means that node number 1000 (say) is always in roughly the same place on

every brain. The success of this ‘registration’ can be gauged by looking at Figure 1, which

shows the simple average of the coordinates of each node over all 321 surfaces. The fact

that Figure 1 still looks like a brain, with many of the main anatomical features such as the

central sulcus clearly visible, shows how well the surfaces are registered.

One final but important data preprocessing step should be mentioned. It is well known

that some subjects have overall thinner cortex than others, due possibly to differing contrast

between the grey and white matter that may shift the cortical boundary. This can be seen

in the plot of the average cortical thickness against age shown in Figure 8, which also shows

that males have overall thicker cortex than females by 0.10±0.02mm. To remove this overall

effect, each subject’s average cortical thickness (averaged over over all surface nodes) was

subtracted from that subject’s cortical thickness, so that all thickness measurements were

standardised to the same global average. This means that the male minus female cortical

thickness difference (Figure 1(b)) must sum to zero across all surface points, or in other

words, a positive difference in one part of the brain must be matched by a negative difference

in another. The advantage of this is that it divorces our analysis from global effects, as in

Figure 8, and focuses it on localized regional effects.

Proceeding with the analysis, S is the 2D cortical surface, and since it is a closed sur-

face, its boundary ∂S is empty. The sample standard deviation of the numerical derivative

||ej||/||sj − s0||, averaged over all neighbours sj of s0, is shown in Figure 3(a). We can see
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Figure 8: Average cortical thickness of the n = 321 subjects. Cortical thickness decreases with age,
and males have overall thicker cortex than females by 0.10 ± 0.02mm. Average cortical thickness
was subtracted from the thickness measurements at each point on the cortical surface before the
analysis in Figures 1 and 3.

that it varies considerably across the brain, indicating non-isotropy. In Figure 3(b) we tried

to warp the brain to approximate local isotropy by 4000 iterations of an algorithm that

readjusts the coordinates s̃0 of each point to minimise
∑

points,j(||s̃j − s̃0||2 − ||ej||2)2 with

the goal of achieving

||s̃j − s̃0||2 ≈ ||ej||2.

This tends to expand regions with high ||ej||/||sj − s0|| to make them smoother, and shrink

regions with low ||ej||/||sj − s0|| to make them rougher. The success of this can be judged

in Figure 3(c), where ||ej||/||s̃j − s̃0|| is almost constant. If we had an extra two dimensions,

we could in principle achieve exact local isotropy in 5 dimensions by the Nash Embedding

Theorem, but it is not easy to visualize a 5D object.

Figure 3(d) shows the T-statistic from Figure 1 on the ‘isotropic’ mesh. To determine

the P = 0.05 threshold for the maximum T-statistic, the LKC’s of S were calculated from

(24) and (25):

L̂0(S) = 2

L̂1(S) = 0

L̂2(S) = 2334.2.

(27)
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The Euler characteristic L̂0(S) = 2 because S is a closed surface; L̂1(S) = 0 because each

edge is the boundary of two triangles, so all the edge contributions cancel; L̂2(S) = 2334.2,

which would also equal the surface area of the warped brain if the warping had achieved

exact local isotropy. The relative error in this last LKC, and hence the resulting P-values,

is, from (22), 0.0025.

The EC densities of the T-statistic with ν = 318 degrees of freedom from (10) were used

in (12) to get approximate P-values. The P = 0.05 threshold was t = 4.43, and Figure

3(e) shows the excursion set of the T-statistic thresholded at this value. Figure 3(f) puts it

back on the average cortical surface, allowing us to identify those regions where males have

thicker cortex than females. We conclude that males have thicker cortex than females in the

occipital lobe (an estimated difference of 0.44± 0.06mm), and a region near the base of the

central sulcus (an estimated difference of 0.35± 0.06mm). Repeating this for negative peaks

shows that females have thicker cortex in the frontal lobe. If thicker cortex correlates with

increased function, then these conclusions reinforce the hypothesis that males are better at

visual and motor tasks, whereas females are better at emotional and perception tasks.

6.2 fMRI

We apply our methods to a 3D data set from a functional magnetic resonance imaging

(fMRI) experiment fully described in Taylor and Worsley (2006a). A subject was scanned

every 2.5 seconds while listening to different sentences read by different speakers presented

every 3.33 seconds, for a total of 191 scans. This was repeated 4 times on each of 14 subjects.

The object of the experiment was to detect the (sparse) regions of the brain that respond

to listening to different sentences, compared to listening to the same sentence. We used

straightforward linear mixed effects models together with spatial smoothing to boost the

degrees of freedom (Worsley et al. 2002; Worsley 2003). The result is a T-statistic image

with 40 effective degrees of freedom for the contrast just described.

The search region S is the set of points inside the brain defined by the function f(s)

equal to the fMRI value minimized over each scan and each subject thresholded at f0 =

6330. This threshold gave a reasonable brain mask that covered every scan on every subject

(Figure 9). The FMRISTAT software was used to estimate LKC as follows (see in particular

http://www.math.mcgill.ca/keith/fmristat/#resels) - note that FMRISTAT works in
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(a) (b)

Figure 9: fMRI example. The yellow blobs inside the red box are the T-statistic (40 df) for the
“different sentence” minus “same sentence” contrast thresholded at t = 5.83 (P = 0.05). There
are two differences in the left mid-temporal gyrus, and a third very tiny one just visible on the
lower box edge in the left inferior temporal gyrus. Inter-hemispheric slices show the cube root of
the estimated LKC densities, smoothed 10mm, for (a) d = 1, and (b) d = 3, in units of mm−1.
The integral of these densities over the search region S (transparent) is the contribution from the
interior of S to L̂d(S).

terms of resels, rather than LKC. The 3D rectilinear mesh was divided into five tetrahedra as

in Figure 6(a), then the vertices just outside ∂S were moved to ∂S to fill S with tetrahedra

as explained in Section 5.1. LKC’s of S were estimated by the method in Section 5.2 using

the whitened least-squares residuals, to give

L̂0(S) = 9

L̂1(S) = 176.3

L̂2(S) = 1037.6

L̂3(S) = 9441.1.

(28)

Although S is connected, it contains several small hollows, to give an EC of 9, the zeroth

order LKC. The P = 0.05 threshold determined from (10), (12) and (28) was t = 5.831, and

the resulting regions are shown in Figure 9. The relative error in the last LKC, and hence

the resulting P-values, is, from (22), 0.0024.

It is not easy to visualize the 3D search region S warped to approximate local isotropy,

as we did in the 2D example in Section 6.1. To get some idea of what this warping looks like,

we can instead produce images of the LKC densities. These are defined as the contributions
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from the interior of S to L̂d(S) per unit volume. In other words, these densities, integrated

over S, produce the contributions from the interior of S to L̂d(S). The d = 3 density is just

det(Λ̂)1/2 = |F̃ |/|F |

for each tetrahedron F . The d = 2 density is zero, as explained in Section 4.3. The most

interesting case is the d = 1 density. The contribution to L̂1(S) at an interior edge F̃ is

|F̃ |
(
1−

∑
θ/(2π)

)

where θ is the interior angle (26) of a tetrahedron that contains F̃ , and the summation is

over all such tetrahedra. The d = 1 density is positive if the sum of the interior angles is less

than 2π, that is, if S̃ is (locally) positively curved. It is negative if S̃ is (locally) negatively

curved, and zero if S̃ is locally flat.

Slices of these two densities are shown in Figure 9. From the d = 1 density we can see

that the brain as a whole appears to be slightly negatively curved. The d = 3 density is low

in grey matter regions, indicating that |F̃ | is small because grey matter neighbours are more

spatially correlated than neighbours in other parts of the brain. To achieve local isotropy,

F should be shrunk in these regions by bringing grey matter neighbours closer together.

We should confess that all the effort of setting up the tetrahedral mesh to get the lower

order LKC’s makes very little difference to the final threshold in this case (see Table 1). The

d = 3 volume term can be easily estimated, without using the tetrahedral mesh, from the

variance of numerical derivatives on the rectilinear mesh. Approximating the search region S̃

by a ball with this same volume term gives exactly the same P-value and threshold, to three

decimals. Using just the d = 3 term in (12) and ignoring the others gives a very slightly lower

P-value and threshold. Finally it must be noted that, since the data is coarsely sampled, a

simple Bonferroni bound for the 172,074 lattice points inside S gives a higher P-value and

threshold that is almost as good. A lower bound on lattice maxima, found using the expected

number of discrete local maxima (DLM) (Taylor et al. 2007; Worsley and Taylor 2005), gives

the lowest P-value and threshold, and since it is conservative (under most conditions) it is

perhaps the most accurate.
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Method P at t = 5.831 t at P = 0.05
Using the estimated LKC’s 0.050 5.831
S a sphere with the same volume term 0.050 5.831
Only the volume term 0.047 5.812
Bonferroni on the 172,074 lattice points in S 0.070 5.937
Discrete Local Maxima (DLM) 0.030 5.667

Table 1: Comparison of P-values P and thresholds t for the fMRI example using different methods.

A Appendix

A.1 Intrinsic volume

The d-th intrinsic volume of a set S is a generalization of its volume to d-dimensional

measures. For example the (D − 1)th intrinsic volume of S ⊂ RD is half its surface area,

and the 0th intrinsic volume is the Euler characteristic of S. We give four ways of defining

intrinsic volumes; the first is an implicit definition as coefficients of a polynomial, the second

and third are explicit for simplices and for ‘smooth’ sets, and the fourth is a characterization

through an additivity property.

A.1.1 Implicit definition

The first definition is implicit, identifying the intrinsic volumes as coefficients in a certain

polynomial. This definition comes from the Steiner-Weyl volume of tubes formulae which

states that if S is locally convex, then for r small enough

|Tube(S, r)| =
D∑

d=0

ωD−dr
D−dµd(S) (29)

where | · | denotes Lebesgue measure and Tube(S, r) = {x : mins∈S ||s− x|| ≤ r} is the tube

of radius r around S and ωd = πd/2/Γ(d/2 + 1) is the Lebesgue measure of the unit ball

in Rd. Using (29), Figure 5(b) gives a graphical proof of the following result for a triangle

(D = 2):
µ0(S) = 1 = ϕ(S)

µ1(S) = 1
2
perimeter length(S)

µ2(S) = |S|.
(30)
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A.1.2 Simplex

For a closed simplex S, the intrinsic volume µd(S) is determined by all faces F of dimension

d. The contribution of a such a face F is seen to be

|F | · β(F, S) (31)

where |F | is the d dimensional surface area of F and β(F, S) is the external angle of F in S

defined to be the proportion of unit normal vectors in D− d dimensions perpendicular to F

that project from the tube to F . Therefore,

µd(S) =
∑

F⊆S : dim(F )=d

|F |β(F, S). (32)

In Figure 5(b) it is easy to see that the external angle of a vertex F in the triangle S is just

(π − internal angle at F )/(2π).

A.1.3 Smooth sets

If, on the other hand S is a compact domain in R2 with smooth boundary, then it is easy

to see that (30) still holds. In higher dimensions, using the implicit definition as coefficients

in the volume of tube formula and using some (straightforward, but detailed) calculus, it is

possible to derive the intrinsic volumes of a smooth domain in RD, which we now describe.

Let C(s) be the (D − 1) × (D − 1) inside curvature matrix at s ∈ ∂S, the boundary of S.

To compute the intrinsic volumes, we need the det-traces of a square matrix: for a d × d

symmetric matrix A, let detrj(A) denote the sum of the determinants of all j × j principal

minors of A, so that detrd(A) = det(A), detr1(A) = tr(A), and we define detr0(A) = 1.

Let ad = 2πd/2/Γ(d/2) be the (d − 1)-dimensional Hausdorff (surface) measure of a unit

(d− 1)-sphere in Rd. For d = 0, . . . , D − 1 the d-th intrinsic volume of S is

µd(S) =
1

aD−d

∫

∂S

detrD−1−d{C(s)}ds, (33)

and µD(S) = |S|, the Lebesgue measure of S. Note that µ0(S) = ϕ(S) by the Gauss-Bonnet

Theorem, and µD−1(S) is half the surface area of S. This leads immediately to (9).
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A.1.4 Characterization through additivity

Finally, intrinsic volumes satisfy the additivity rule (18)

µd(A ∪B) = µd(A) + µd(B)− µd(A ∩B),

for any two sets A,B, and are invariant under rigid motions, that is, for any rigid motion g

µd(gA) = µd(A)

and any scaling c > 0

µd(cA) = µ({cs : s ∈ A}) = cdµd(A).

These three relations actually characterize intrinsic volumes up to a constant (Hadwiger

1957), at least on the convex ring formed by finite unions of convex sets.

A.2 EC density

For d > 0 the EC density of a smooth stationary random field is, writing T = T (s),

ρd(t) = E
(
(T ≥ t)det(−T̈d) | Ṫd = 0

)
P(Ṫd = 0), (34)

where dot notation with subscript d denotes differentiation with respect to the first d com-

ponents of s, first as a row vector, then as a column vector. For d = 0, ρ0(t) = P(T ≥ t).

There is a much simpler way of getting EC densities when T is built from i.i.d. Gaussian

random fields, such as T- and F-statistic random fields for contrasts from the linear model

(1). This very powerful result is based on the Gaussian Kinematic Formula discovered

by Taylor (2006). The idea is to take the Steiner-Weyl volume of tubes formula (29) and

replace the search region by the rejection region, and volume by probability. The coefficients

of powers of the tube radius are (to within a constant) the EC densities we seek.

The details are as follows. Suppose T = f(Z1, . . . , Zn) is a function of i.i.d. UGRF’s

Z1, . . . , Zn. Put a tube of radius r about the rejection region R = {z : f(z) ≥ t} ⊂ Rn,

evaluate the probability content of the tube (using the Nn(0, In×n) distribution of Z1, . . . , Zn),

and expand as a power series in r. Then

P ((Z1, . . . , Zn) ∈ R⊕B(0, r)) =
∞∑

d=0

rd

d!
(2π)d/2ρd(t). (35)
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For T a UGRF, n = 1, f(z) = z, and this leads directly to

ρd(t) =

( −1√
2π

∂

∂t

)d

P(T ≥ t). (36)

For T a T-statistic random field with ν = n− 1 degrees of freedom,

f(z1, . . . , zn) = z1

(
n∑

j=2

z2
j /ν

)−1/2

.

The rejection region R is a cone, and after a little elementary geometry,

P ((Z1, . . . , Zn) ∈ R⊕B(0, r)) = P
(
Z > t

√
V/ν − r

√
1 + t2/ν

)
+ O(rν+1), (37)

where V ∼ χ2
ν independently of Z ∼ N(0, 1). Expanding the right hand side of (37) in powers

of r and equating it to that of (35) gives the EC densities (10) for d ≤ ν. EC densities for

other non-Gaussian random fields built from Gaussians can be found in Worsley (1994), Cao

and Worsley (1999a), Cao and Worsley (1999b) and Taylor and Worsley (2006b).

A.3 Proof of Theorem 1

Sommerville’s identities, which can be proved by a fairly straightforward inclusion-exclusion

argument, are the following: let S be a simplex and F ⊆ S a face. Then

β(F, S) =
∑

F⊆G⊆S

(−1)dim(G)−dim(F )β(F, G)

α(F, S) =
∑

F⊆G⊆S

(−1)dim(S)−dim(G)α(G,S)

where dim(F ) is the dimensionality of F , equal to one less than the number of points in F and

α(F, S) is the internal angle of F in S which is the proportion of unit normals leaving F but

staying in S. It actually holds for arbitrary polytopes (the convex hull of a finite pointset)

in Euclidean space. For completeness, we first sketch a proof of Somerville’s identity for

internal angles, from which the corresponding one for external angles follows by a duality

argument. We then prove the result true for simplices, then appeal to additivity (18).

The internal angle of a face F of dimension d in a D-dimensional simplex S is the normal-

ized volume of the spherical cross-section of a convex cone determined by the intersection of

k = D−d of half-spaces {H1, . . . , Hk} each perpendicular to sp(F ), the linear space spanned

by F . Further, each subset of {H1, . . . , Hk} corresponds to some face G ⊇ F contained in S.
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Let VD−d−1 denote the surface measure on S⊥(F ), the sphere of unit normals perpendicular

to sp(F ), then

α(F, S) = VD−d−1

(
k∏

j=1

1Hj

)

where we have committed the slight abuse of notation of identifying the half-spaces with the

half-spheres in S⊥(F ) they determine. By inclusion-exclusion

k∏
j=1

1Hj
= 1−

∑
j

1Hc
j
+ · · ·+ (−1)k

∑
j1<···<jk

k∏

l=1

1Hc
jl

and by symmetry

α(F, S) = 1−
∑

j

VD−d−1

(
1Hc

j

)
+ · · ·+ (−1)k

∑
j1<···<jk

VD−d−1

(
k∏

l=1

1Hc
jl

)

= 1−
∑

j

VD−d−1

(
1Hj

)
+ · · ·+ (−1)k

∑
j1<···<jk

VD−d−1

(
k∏

l=1

1Hjl

)

=
∑

F⊆G⊆S

(−1)dim(S)−dim(G)α(G,S).

Turning to the main result of the Theorem, by (32), if S is a simplex

µd(S) =
∑

G⊆S: dim(G)=d

|G| ·
∑

G⊆F⊆S

(−1)dim(F )−dim(G)β(G,F )

=
∑

F⊆S: dim(F )≥d

(−1)dim(F )−d
∑

G⊆F :dim(G)=d

|G| · β(G,F )

=
∑

F⊆S: dim(F )≥d

(−1)dim(F )−dµd(F ).

A.4 Proof of Theorem 2: consistency

Turning to consistency, we must impose some conditions on the UGRFs Zi, 1 ≤ i ≤ n

involved in defining S̃ = u(S). We must assume that the collection of random variables

Z(s), s ∈ S considered as a subset of L2 is a smooth manifold with boundary and that the

triangulations of S̃ “respect” this structure, at least asymptotically. This will generally be

the case if the map from M to L2, s 7→ Z(s) (i.e. the random field) is smooth and 1:1,

so that the random field can be thought of as an embedding of M in L2. In this case, the

variogram is a true metric, and most reasonable triangulation schemes of S will respect the

physical shape of S.
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Assuming such sufficient regularity, without loss of generality, we can simplify the problem

to studying the trivial linear model

Yi(s) = Zi(s), 1 ≤ i ≤ n (38)

so that (17) becomes exact as n →∞, i.e. so that

lim
n→∞

‖u(s1)− u(s2)‖2 = Var(Z(s1)− Z(s2)). (39)

Working under (38), let us fix a triangulation M of S and set S̃n,M to be the simplicial

complex with edge lengths ‖u(s1)− u(s2)‖. It is not hard to see that

L̂d(S̃n,M)
n→∞−→ Ld(S̃M)

where S̃M is a triangulation of S with edge lengths Var(Z(s1) − Z(s2))
1/2. Having sent

n → ∞ we now can take a fixed sequence Mk of finer and finer triangulations and the

results of Cheeger et al. (1984) imply

Ld(S̃Mk
)

k→∞−→ Ld(S).

This is different than saying that the estimates recover the local curvature matrix. In fact the

results in Cheeger et al. (1984), which seem to be the strongest available for convergence of

intrinsic volumes, are not even strong enough to imply that the (signed) curvature measures,

of which the intrinsic volumes are the (signed) total mass, converge vaguely as finite (signed)

measures. However, if one integrates the curvature measures over small balls, and other sets

with smooth boundaries, these quantities do converge (Cheeger et al. 1984).

A.5 Proof of Theorem 2: unbiasedness

In order to apply the results in Cheeger et al. (1984), the triangulationsMk must satisfy some

uniform non-degeneracy conditions. This makes claims about unbiasedness rather tricky: for

instance, it seems difficult to prove that for fixed n and a fixed sequence of triangulations

Mk that the estimates

L̂d(S̃n,Mk
) (40)

are consistent. However, if we allow the triangulations to be random then it is possible to

define a sequence of triangulations Mk such that the estimates (40) converge to µd(u(S)).
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It seems then that the best result in terms of unbiasedness we can hope for is the following

E (µd(u(S))) = Ld(S), 0 ≤ d ≤ D. (41)

Without loss of generality, we work now with the trivial model (38) in which case

u(s) = Z(s)/‖Z(s)‖ (42)

where, with some abuse of notation, Z(s) = (Z1(s), . . . , Zn(s))′ is the n-vector of independent

Gaussian random fields with zero mean and unit variance each with the same distribution

as Z(s).

The simplest term to work with is the volume term µD(u(S)). In practical applications

this term usually makes the largest contribution to the P-value approximation (12). The

estimators are indeed unbiased for all d, but we omit these details which can be found in the

upcoming monograph (Adler et al. 2006).

Unbiasedness of the volume term has already been shown by Kiebel et al. (1999) and

Hayasaka et al. (2004) but we reproduce the result here. Standard formulas from multivariate

calculus for computing surface area show that

µD(u(S)) =

∫

S

det(u̇(s)′u̇(s))1/2 ds

while

LD(S) =

∫

S

det(Λ(s))1/2 ds.

Therefore, it is sufficient to show that

E
(
det(u̇(s)′u̇(s))1/2

)
= det(Λ(s))1/2

for each s ∈ S.

In the trivial model (38)

u̇(s) =

(
In×n − Z(s)Z(s)′

Z(s)′Z(s)

)
Ż(s)

‖Z(s)‖ . (43)

Now since Var(Z(s)) = 1 does not depend on s then Z(s) and Ż(s) are uncorrelated and

hence independent. To see this, let h(s1, s2) = Cov(Z(s1), Z(s2)) and let hj(s1, s2) denote

its derivative with respect to sj, j = 1, 2. Then Cov(Ż(s), Z(s)) = h1(s, s) = h2(s, s) by
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symmetry. Since the variance is constant then ∂Var(Z(s))/∂s = h1(s, s) + h2(s, s) = 0, so

that hj(s, s) = 0. Conditional on Z(s),

u̇(s)′u̇(s) ∼ WishartD(Λ(s)/‖Z(s)‖2, n− 1).

It therefore follows that unconditionally

det(u̇(s)′u̇(s))1/2 D
= det(Λ(s))1/2det(W )1/2V −D/2 (44)

in distribution, where W ∼ WishartD(ID×D, n − 1) and V ∼ χ2
n, independently, provided

n > D. Note that if n ≤ 2D then S̃ can self-intersect with non-zero probability, as in Figure

4, in which case the intersections are ignored when calculating the intrinsic volumes. In

other words, the LKC is computed based on the local geometry as determined by u̇(s)′u̇(s),

and not on the global geometry of the actual image S̃ of the search region in Rn. Formally,

u̇(s)′u̇(s) defines a Riemannian metric (see Adler and Taylor (2006) for a full discussion of

the relevant Riemannian geometry as it relates to random fields), which agrees with the

Riemannian metric S̃ inherits as a subset of Rn only when S̃ has no intersections.

It is well known in multivariate analysis that

det(W )
D
=

D∏
j=1

Vj (45)

where Vj ∼ χ2
n−j, independently, j = 1, . . . , D. It can be checked that after taking expecta-

tions,

E(det(W )1/2V −D/2) = 1, (46)

so that combining (44-46) with (20), the volume term is unbiased for any D, i.e.

E(µD(u(S))) = LD(S).

A.6 Variance of the LKC estimator

The next question is its variance. The variance of det(Λ̂(s))1/2 relative to the square of its

mean (the coefficient of variation) is

Var(det(W )1/2V −D/2) =
Γ(ν)Γ(ν

2
−D)2D

Γ(ν −D)Γ(ν
2
)
− 1 ≈ D(D + 1)

2ν
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for large ν. To get a rough idea of the variance of L̂D(S) we need the spatial correlation of

det(Λ̂(s))1/2.

Let h = h(s1, s2) = Cor(Z(s1), Z(s2)) be the spatial correlation function of Z, and let

subscript j denote differentiation with respect to sj, j = 1, 2. Then the spatial covariance

function of Ż is h12 and, from standard multivariate analysis, the spatial covariance function

of Ż ′Ż is 2tr(h2
12). To take this a bit further we need to assume that Z is stationary, in

which case the spatial correlation function of Ż ′Ż is

H(s1, s2) = tr(h12(s1, s2)
2)/tr(h12(0, 0)2).

We shall now argue that H is also roughly the spatial correlation function of det(Λ̂(s))1/2 for

large ν. First of all for large ν we can replace U̇ by ṙ/
√

ν whose rows have the same spatial

correlation structure as Ż. The spatial correlation function of ṙ′ṙ/ν is H. Consider the case

of D = 1, so that det(Λ̂(s))1/2 ≈ (ṙ′ṙ/ν)1/2. Taking a smooth function of a random field with

small variance does not appreciably alter its spatial correlation function, by using a simple

linear approximation argument. Thus in the case D = 1, H is approximately the spatial

correlation function of det(Λ̂(s))1/2. We can apply the same argument to higher dimensions

by breaking down the determinant of the Wishart matrix ṙ′ṙ into component χ2 random

variables by a sequence of Gram-Schmidt orthogonalizations in exactly the same way as we

prove (45). Each of these components has the same spatial correlation H, and, by a linear

approximation, so does det(Λ̂(s))1/2. We conclude finally that for large search regions S,

large ν and stationary Z,

Var(L̂D(S))

L2
D(S)

≈ D(D + 1)

2ν|S|
∫

S

H(0, s)ds. (47)

The coefficient of variation of the estimated P-value (12) is also approximated by the right

hand side of (47). A common model for the spatial correlation function of Z is the Gaussian

function

h(s1, s2) = exp(−(s1 − s2)
′Λ(s1 − s2)/2), (48)

which gives (22).
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Verlag.

Hayasaka, S., Luan-Phan, K., Liberzon, I., Worsley, K. J., and Nichols, T. E. (2004), “Non-
stationary cluster-size inference with random field and permutation methods,” NeuroImage, 22,
676–687.

Hunter, D. (1976), “An upper bound for the probability of a union,” Journal of Applied Probability,
13, 597–603.

Hurdal, M. K. and Stephenson, K. (2004), “Cortical cartography using the discrete conformal
approach of circle packings,” NeuroImage, 23, S119–S128.

36



Kiebel, S. J., Poline, J. B., Friston, K. J., Holmes, A. P., and Worsley, K. J. (1999), “Robust
smoothness estimation in statistical parametric maps using normalised residuals from the general
linear model,” NeuroImage, 10, 756–766.

Lerch, J. and Evans, A. C. (2005), “Cortical thickness analysis examined through power analysis
and a population simulation,” NeuroImage, 24, 163–173.

Naiman, D. Q. and Wynn, H. P. (1992), “Inclusion-exclusion-Bonferroni identities and inequalities
for discrete tube-like problems via Euler characteristics,” Annals of Statistics, 20, 43–76.

— (1997), “Abstract tubes, improved inclusion-exclusion identities and inequalities and importance
sampling,” Annals of Statistics, 25, 1954–1983.

Rice, S. O. (1945), “Mathematical analysis of random noise,” Bell System Technical Journal , 24,
46–156. Also in Wax, N. (Ed.) (1954), Selected Papers on Noise and Stochastic Processes, Dover,
New York.

Rosenfeld, A. and Kak, A. C. (1982), Digital Picture Processing, Volume 2 . Orlando: Academic
Press.

Sampson, P. D. and Guttorp, P. (1992), “Nonparametric estimation of nonstationary spatial co-
variance structure,” Journal of the American Statistical Association, 87, 108–119.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J.,
and Giedd, J. (2006), “Intellectual ability and cortical development in children and adolescents,”
Nature, 440, 676–679.

Shephard, M. S. and Georges, M. K. (1991), “Automatic Three-Dimensional Mesh Generation by
the Finite Octree Technique,” International Journal for Numerical Methods in Engineering, 32,
709–749.

Siegmund, D. O. and Worsley, K. J. (1995), “Testing for a signal with unknown location and scale
in a stationary Gaussian random field,” Annals of Statistics, 23, 608–639.

Sun, J. (1993), “Tail probabilities of the maxima of Gaussian random fields,” Ann. Probab., 21,
34–71.

Sun, J. and Loader, C. R. (1994), “Simultaneous confidence bands for linear regression and smooth-
ing,” Annals of Statistics, 22, 1328–1345.

Taylor, J. E. (2006), “A Gaussian kinematic formula,” Annals of Probability , 34, 122–158.

Taylor, J. E. and Adler, R. J. (2003), “Euler characteristics for Gaussian fields on manifolds,”
Annals of Probability , 31, 533–563.

Taylor, J. E., Takemura, A., and Adler, R. J. (2005), “Validity of the expected Euler characteristic
heuristic,” Annals of Probability , 33, 1362–1396.

Taylor, J. E. and Worsley, K. J. (2006a), “Inference for magnitudes and delays of responses in the
FIAC data using BRAINSTAT/FMRISTAT,” Human Brain Mapping , 27, 434–441.

37



— (2006b), “Random fields of multivariate test statistics, with applications to shape analysis and
fMRI,” Annals of Statistics. Under revision.
URL http://www.math.mcgill.ca/keith/roy/roy_abstract.htm

Taylor, J. E., Worsley, K. J., and Gosselin, F. (2007), “Maxima of discretely sampled random fields,
with an application to ‘bubbles’,” Biometrika. In press.
URL http://www.math.mcgill.ca/keith/bubbles/dlmstat3.pdf

Worsley, K. (1982), “An improved Bonferroni inequality and applications,” Biometrika, 69, 297–
302.

Worsley, K. J. (1994), “Local maxima and the expected Euler characteristic of excursion sets of
χ2, F and t fields,” Advances in Applied Probability , 26, 13–42.

— (1995), “Boundary corrections for the expected Euler characteristic of excursion sets of random
fields, with an application to astrophysics,” Advances in Applied Probability, 27, 943–959.

— (2003), “Detecting activation in fMRI data,” Statistical Methods in Medical Research, 12, 401–
418.

Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D., and Evans, A. C. (1999), “Detecting
changes in nonisotropic images,” Human Brain Mapping , 8, 98–101.

Worsley, K. J., Evans, A. C., Marrett, S., and Neelin, P. (1992), “A three-dimensional statisti-
cal analysis for CBF activation studies in human brain,” Journal of Cerebral Blood Flow and
Metabolism, 12, 900–918.

Worsley, K. J., Liao, C., Aston, J., Petre, V., Duncan, G. H., Morales, F., and Evans, A. C. (2002),
“A general statistical analysis for fMRI data,” NeuroImage, 15, 1–15.

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., and Evans, A. C. (1996), “A
unified statistical approach for determining significant signals in images of cerebral activation,”
Human Brain Mapping , 4, 58–73.

Worsley, K. J. and Taylor, J. E. (2005), “An improved theoretical P-value for SPMs based on
discrete local maxima,” NeuroImage, 28, 1056–1062.

38

http://www.math.mcgill.ca/keith/roy/roy_abstract.htm�
http://www.math.mcgill.ca/keith/bubbles/dlmstat3.pdf�

