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Abstract

A conjunction is defined in the brain mapping literature as the occurrence of the same
event at the same location in two or more independent 3D brain images. The images are
smooth isotropic 3D random fields of test statistics, and the event occurs when the image
exceeds a fixed high threshold. We give a simple approximation to the probability of a
conjunction occurring anywhere in a fixed region, so that we can test for a local increase in
mean of the images at the same unknown location in all images, a generalization of the split-t
test. This is the corollary to a more general result on the expected Minkowski functionals of
the set of points where a conjunction occurs.
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1 Introduction

Let Xi(t) be the value of image i at location t ∈ <D, 1 ≤ i ≤ n, and let x be a fixed
threshold. The set of points where a conjunction occurs is

C = {t ∈ S : Xi(t) ≥ x for all 1 ≤ i ≤ n}.
An example is shown in Figure 1 for n = 6. We are interested in the probability that C is
not empty, that is, the probability that all images exceed the threshold at some point inside
S, or that the maximum over t ∈ S of the minimum over i of Xi(t) exceeds x:

P{C 6= ∅} = P
{
max
t∈S

min
1≤i≤n

Xi(t) ≥ x
}

. (1)
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If the images are independent stationary random fields then the expected Lebesgue measure
or volume of C is

E{|C|} = pn|S|, (2)

where p = P{Xi(t) ≥ x}. Our main result is that (2) holds if Lebesgue measure is replaced
by a vector of Minkowski functionals, and p is replaced by a matrix of Euler characteristic
intensity functions for the random field. This gives (2) as a special case, and other interesting
quantities such as the expected surface area of C, which comes from the D − 1 dimensional
Minkowski functional. But the component of most interest to us is the zero dimensional
Minkowski functional, or Euler characteristic (EC). For high thresholds, the expected EC of
C is a very accurate approximation to the probability (1) that we seek (Adler, 1998). We
apply this result to some real data in brain mapping in Section 5.

This also allows us to set the level of the split-t test. Shaywitz et al. (1995) used this test
to determine whether the functional organization of the brain for language differed according
to sex. 38 independent fMRI images were randomly divided into n = 2 groups, and an image
Xi(t) of t-statistics was calculated for each group i = 1, 2. The split-t test rejects if the null
hypothesis is rejected for both groups at the same point t, that is, if X1(t) ≥ x and X2(t) ≥ x
for some threshold x, taken as the upper level 5% point of the t-distribution with 17 degrees
of freedom. The resulting image of conjunctions C appears on the cover of Nature that
contains Shaywitz et al. (1995).

2 Integral geometry and stereology

In this section we shall state some results from integral geometry and stereology that will
be used to prove our main result (see for example Santaló, 1976).

Let µi(A) be the ith Minkowski functional of a set A ⊂ <D, scaled so that it is invari-
ant under embedding of A into any higher dimensional Euclidean space. If A has a twice
differentiable boundary ∂A, then it can be defined as follows. Let si = 2πi/2/Γ(i/2) be the
surface area of a unit (i − 1)-sphere in <i. For M an m × m matrix let detrj(M) denote
the sum of the determinant of all j × j principal minors of M, so that detrm(M) = det(M),
detr1(M) = tr(M) and we define detr0(M) = 1. Let Q be the (D − 1)× (D − 1) curvature
matrix of ∂A. Then for 0 ≤ i < D

µi(S) =
1

sD−i

∫

∂A
detrD−1−i(Q)dt,

and define µD(A) = |A|. Note that µ0(A) is the EC of A by the Gauss-Bonnet Theorem,
and µD−1(A) is half the surface area of A. For example, the Minkowski functionals of a ball
of radius r in <3 are

µ0(S) = 1, µ1(S) = 4πr, µ2(S) = 2πr2, µ3(S) = (4/3)πr3. (3)

We shall use the result that any set functional ψ(A) that obeys the additivity rule

ψ(A ∪B) = ψ(A) + ψ(B)− ψ(A ∩B) (4)
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is a linear combination of the Minkowski functionals. Let A,B ⊂ <D, then the Kinematic
Fundamental Formula of integral geometry relates the integrated EC of the intersection of
A and B to their Minkowski functionals:

∫
µ0(A ∩B) = s2 . . . sD

D∑

i=0

µi(A)µD−i(B)

cD
i

, (5)

where the integral is over all rotations and translations of A, keeping B fixed, and

cD
i =

Γ
(

1
2

)
Γ

(
D+1

2

)

Γ
(

i+1
2

)
Γ

(
D−i+1

2

) .

3 Random fields

If X(t), t ∈ <D, is an isotropic random field with excursion set A = {t : X(t) ≥ x} then

E{µ0(A ∩ S)} =
D∑

i=0

ρiµi(S) (6)

for some constants ρi. This follows from the fact that ψ(S) = E{µ0(S ∩ A)} obeys the
additivity rule (4), since µ0 does, so it must be a linear combination of the Minkowski
functionals µi(S). The coefficients ρi, called Euler characteristic (EC) intensities in <i, can
be evaluated for a variety of random fields (Adler, 1981; Worsley, 1994, 1998; Siegmund &
Worsley, 1995; Cao & Worsley, 1999ab). For example, for a Gaussian random field with
E{X(t)} = 0, Var{X(t)} = 0, Var{∂X(t)/∂t} = λI, where I is the D×D identity matrix,
then ρ0 = P{X(t) ≥ x} and for i > 0

ρi = λi/2(2π)−(i+1)/2Hei−1(x)e−x2/2, (7)

where Hej(x) is the Hermite polynomial of degree j in x. We now extend (6) to higher
Minkowski functionals.

Lemma 1

E{µi(A ∩ S)} =
D∑

j=i

cj
iρj−iµj(S).

Proof. Clearly ψ(S) = E{µi(A∩S)} obeys the additivity rule (4), since µi does, so that we
can write

E{µi(A ∩ S)} =
D∑

j=0

aijµj(S) (8)

for some constants aij that do not depend on S. To evaluate these constants, replace S in
(8) by Ek, a bounded convex set in a k-plane, k ≤ D. Since the ith Minkowski functional of
a set in <k is zero for i > k, then aik is zero for i > k. For i ≤ k,

E{µi(A ∩ Ek)}
µk(Ek)

=
D∑

j=i

aij
µj(Ek)

µk(Ek)
→ aik (9)
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as Ek → <k. We can thus interpret aik as the density of the ith Minkowski functional of the
excursion set of X in <k. To evaluate aik, apply the Kinematic Fundamental Formula (5) to
A ∩ ED and S:

∫
µ0((A ∩ ED) ∩ S) = s2 . . . sD

D∑

i=0

µi(A ∩ ED)µD−i(S)

cD
i

.

Dividing both sides by s2 . . . sDµD(ED) and taking limits we get

E{µ0(A ∩ S)} =
D∑

i=0

lim
ED→<D

E{µi(A ∩ ED)}
µD(ED)

µD−i(S)

cD
i

.

Comparing this with (6) we get

lim
ED→<D

E{µi(A ∩ ED)}
µD(ED)

= cD
i ρD−i

and combining this with (9), we get for i ≤ j,

aij = cj
iρj−i.

Substituting into (8) completes the proof. 2

4 Geometry of the set of conjunctions

Theorem 2 Let bi = Γ((i + 1)/2)/Γ(1/2) and define the upper triangular Toeplitz matrix
Rk and the vector µ(B) by

Rk =




ρ0k/b0 ρ1k/b1 · · · ρDk/bD

0 ρ0k/b0 · · · ρ(D−1)k/bD−1
...

. . .
...

0 0 · · · ρ0k/b0




, µ(B) =




µ0(B)b0

µ1(B)b1
...

µD(B)bD




,

where ρik is the EC intensity of Xk(t) in <i, 1 ≤ k ≤ n, and B ⊂ <D. Then

E{µ(C)} =

(
n∏

i=1

Ri

)
µ(S).

Proof. The proof follows by induction on n. From the lemma, we see that it is clearly true
for n = 1. Let Ak be the excursion set for Xk(t), so that C = A1 ∩ · · · ∩An ∩S. If the result
is true for n = k then by first conditioning on Ak+1 and replacing S by Ak+1 ∩ S we get

E{µ(A1 ∩ · · · ∩ Ak ∩ (Ak+1 ∩ S)} =

(
k∏

i=1

Ri

)
E{µ(Ak+1 ∩ S)} =

(
k∏

i=1

Ri

)
Rk+1µ(S)

by the result for n = 1. This completes the proof. 2
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Comparing this result with (2) we see that it has the same form, with volume replaced
by the vector of weighted Minkowski functionals, and probability replaced by the matrix
of weighted EC intensities. The last element is the same as (2), and the first element is
the expected EC of the set of conjunctions that we shall use as an approximation to the
probability of a conjunction anywhere in S:

P{C 6= ∅} = P
{
max
t∈S

min
1≤i≤n

Xi(t) ≥ x
}
≈ (1, 0, . . . , 0)

(
n∏

i=1

Ri

)
µ(S), (10)

for high thresholds x.

5 Application

We shall apply the result to some D = 3 dimensional functional magnetic resonance imaging
(fMRI) data fully described in Friston et al. (1999). The purpose of the experiment was to
determine those regions of the brain that were consistently stimulated by all subjects while
viewing a pattern of radially moving dots. To do this, subjects were presented with a pattern
of moving dots, followed by a pattern of stationary dots, and this was repeated 10 times,
during which a total of 120 3D fMRI images were obtained at the rate of one every 3.22
seconds. For each subject i and at every point t ∈ <3, a test statistic Xi(t) was calculated
for comparing the fMRI response between the moving dots and the stationary dots. Under
the null hypothesis of no difference, Xi(t) was modeled as an isotropic Gaussian random field
with zero mean, unit variance and λ = 4.68cm−2. A threshold of x = 1.64, corresponding
to an uncorrected level 5% test, was chosen, and the excursion sets for each subject are
shown in Figure 1, together with their intersection, which forms the set of conjunctions C.
The search region S is the whole brain area that was scanned, which was an approximate
spherical region with a volume of |S| = 1226cm3. Finally, the approximate probability of
a conjunction, calculated from (3), (7) and (10), is 0.0126. We can thus conclude, at the
1.26% level, that conjunctions have occurred in the visual cortex, and more interesting, the
lateral geniculate nuclei (see Figure 1).
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Excursion sets for each image

Conjunction: intersection
of excursion sets

left
LGN

right
LGN

front
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Figure 1: Conjunction of n = 6 fMRI images during a visual task (only one slice of the 3D
data is shown). The excursion sets of each Xi(t) ≥ 1.64, i = 1, . . . , 6 are shown in white
on a background of brain anatomy (top). The set of conjunctions C is the intersection of
these sets (bottom). The visual cortex at the back of the brain appears in C, but the most
interesting feature is the appearance of the lateral geniculate nuclei (LGN) (arrows).

7


