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Abstract

A smooth Gaussian random field with zero mean and unit variance is sampled on
a discrete lattice, and we are interested in the exceedence probability (P-value) of the
maximum in a finite region. If the random field is smooth relative to the mesh size, then
the P-value can be well approximated by results for the continuously sampled smooth
random field (Adler, 1981; Worsley, 1995a; Taylor and Adler, 2003). If the random
field is not smooth, so that adjacent lattice values are nearly independent, then the usual
Bonferroni bound is very accurate. The purpose of this paper is to bridge the gap between
the two, and derive a simple, accurate upper bound for mesh sizes in between. The result
uses a new improved Bonferroni-type bound based on discrete local maxima (DLM). We
give an application to the ‘bubbles’ technique for detecting areas of the face used to
discriminate fear from happiness.

Some key words: Bonferroni; Random fields; Bubbles; Euler characteristic.

1 Introduction

Let Z(x) be a D-dimensional stationary Gaussian zero mean, unit variance, random field sam-
pled on a uniform rectilinear lattice (see Figure [1). We are interested in good approximations
to

zeSsS

P=P (maxZ(as) > t) (1)

where S C RP. Such a situation arises frequently in brain mapping, where Z(z) is a 3D image
of brain activity in response to a stimulus, sampled on a uniform lattice of voxels. The search
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Figure 1: The problem. A smooth Gaussian random field Z(z) is sampled on a rectilinear
lattice, and we want to find a good approximation to the P-value of the maximum inside a
search regions S. For unsmoothed data (a), Bonferroni is accurate; for very smooth data (c),
the expected Euler characteristic method is very accurate; we seek a good approximation in
between (b). The data shown is actually a blow-up of the central portion of Figure 5.

region S is usually the whole brain. We are interested in detecting those few isolated regions
in S where E(Z(x)) > 0, that is, those regions where brain activity has occurred. This is done
by thresholding the image at a high value t chosen so that if the entire image were null, the
exceedence probability is controlled to some small value such as 0.05. The threshold ¢ is then
determined by equating (1) to 0.05 and solving for ¢ (see Worsley, 2003, and references therein).
A 2D example is the ‘bubbles’ technique for revealing those areas of an image used in a visual
discrimination task (Gosselin & Schyns, 2001; Schyns et al., 2002; Chauvin et al., 2004). This
will be analysed in detail in Section 8.
The simplest bound on the P-value is the Bonferroni bound (BON):

P < Pgon = N®(t) (2)

where N is the number of lattice points inside S and ®(z) = P(Z > z), Z ~ N(0,1). If the
random field is not smooth, so that its sampled values are roughly independent, then (2)) is very
accurate, but if the random field is very smooth, then it becomes too conservative.

If the random field is smooth relative to the mesh size and S is convex or nearly so then very
accurate approximations to (1) have recently been found using the expected Euler characteristic
(expected EC, or XEC) of the excursion set of a continuously sampled random field (Adler,
1981; Taylor & Adler, 2003). In 2D, the EC counts the number of connected components
minus the number of holes in the excursion set, which for high thresholds takes the value 1 if
the maximum exceeds the threshold, and 0 otherwise. Hence XEC approximates the P-value
of the maximum for high thresholds. For a stationary Gaussian random field the XEC depends
on the roughness of the random field measured by

0Z(x)\
Var ( e ) = A. (3)
Then the XEC PXEC is
D p—
0l(t)
~ _ 1/2
P =~ Pxgpc dE:O pa(SAV7) 5 (4)
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Figure 2: (a) Comparison of Bonferroni (BON), expected Euler characteristic (XEC) and pro-
posed Discrete Local Maxima (DLM) P-values for a 2242 lattice search region, as a function
of filter FWHM relative to mesh size, FWHM /v. The thresholds were the P=0.05 thresholds
based on 9999 simulations (True). Error bars are £1 Sd. (b) Same as in (a), but replacing
P-value by threshold.

where p4(S) is the d-dimensional Minkowski functional or intrinsic volume of S (Worsley,
1995a), and SAY? = {sAY2 : s € S}. In 2D, puo(S) is the EC of S (=1 if S is simply
connected); p1(.S) is half the perimeter length of S; us(S) is the area of S. For d = D,

pup(SAY?) = |S[|A['2 ()

where |S] is the Lebesgue measure of S. For large thresholds ¢, the d = D term in (4) is the
most important, and

Pxgc = |S||A|Y2(2m) =PI/ 2 exp(—t2/2)tP~1 - (1 + O(1/1)). (6)

The error in the approximation (4) is ezponentially smaller than the d = 0 term (Taylor et al.,
2005).

In the brain mapping literature, smoothness is conveniently measured by FWHM, defined
as follows. If Z(x) is modelled as white noise convolved with an isotropic Gaussian-shaped
filter, then FWHM is the Full Width at Half Maximum of this filter. FWHM is 1/8log 2 times
the standard deviation of the Gaussian filter, and if A = Al where I is the D x D identity

matrix, it can be shown that
FWHM = \/4log2/\. (7)

The XEC P-values (6) are then roughly proportional to the volume of S divided by FWHM?®,
so that as the random field becomes less smooth, then these P-values become larger.

Figure 2| illustrates the point. Gaussian random fields were simulated on a 2562 lattice by
smoothing white noise with an isotropic Gaussian filter. For FWHM < 1 lattice step BON is
accurate; for FWHM > 5 lattice steps XEC is accurate.

A simple solution is to take the best of both, i.e. the minimum of the two P’s or thresholds.
This will give P-values that are never more than twice the true value in the example in Figure
2. This method is currently used by the FMRISTAT (Worsley et al., 2002) and SPM software
(Frackowiak et al., 2003) for the statistical analysis of brain imaging data. The purpose of this
paper is to look for something better for the mid range of FWHM . Extensions to non-Gaussian
random fields are given in Worsley (2005).



2 Improved Bonferroni bounds

The problem of determining P in (I)) can be boiled down to this. We have a set of events
A, ={Z(z) > t} and we seek a good approximation to the probability of their (finite) union

pP=P (USCGSAZD) . (8>

We are interested in the case where S is large (typically 50,000) and P is small (typically
0.05). The Bonferroni inequality gives (2), but to do better, we should try to incorporate more
information. There is a long history of trying to improve the Bonferroni bound by adding or
subtracting more higher order terms of the form

P = P(UxESAx) < Z(_l)u‘ilfﬂj)]}» (meJAI> (9)
JCS

for some positive function f on subsets of S. Of course with f(J) =1 (9) is an equality, but the
idea is to set f to zero for most high order intersections, and still retain a sharp inequality. The
remaining terms, involving low-order intersections and hence low-dimensional integrals, can
then be evaluated numerically. A good example which works well when D =1, S ={1,...,n}
and neighbouring values of Z(z) are highly correlated is

P(Uses) <3 P(A) = 3 P4, N A,) (10)

(Hunter, 1976; Worsley, 1982; Efron, 1997). It can easily be generalised by replacing the second
summation over adjacent lattice points by a summation over edges of a tree on S. Tomescu
(1986) generalised it to hyper-trees. Naiman & Wynn (1992, 1997) considered the conditions
on f(J) under which (9)) is an equality or inequality, with applications to importance sampling.
There has been recent work by Dohmen (2000, 2003) and Dohmen & Tittmann (2004) improving
the results of Galambos & Simonelli (1996) and Kwerel (1975) who considered the case where
f(J) takes the same value for all subsets J of the same size. Further work along these lines
has been done by Kounias (1968), Grable (1993) and Hoppe (1993). A related problem, with
links to False Discovery Rate, is addressed by Simes (1986) and Sarkar (1998). Some of these
methods have found applications in maximally selected rank statistics (Hothorn & Lausen,
2003).

However none of these methods work well for the problem of a smooth random field sampled
on a rectilinear grid. The only exception is (10) in the 1D case, which turns out, as the mesh
size decreases, to approach the XEC result (4) which we know to be very accurate for high
thresholds, the ones of main interest. The reason is that none of the above improved Bonferroni
inequalities take direct advantage of the spatial correlation structure of Z(x).

Our proposed DLM method, introduced in the next section, does take into account the
spatial properties of Z(z), and it is very accurate as the mesh size decreases, approaching the
XEC result for large thresholds. However it is not strictly speaking an improved Bonferroni
inequality because it is not of the form (9). However it does rely on the Bonferroni inequality
applied to events other than A,.



3 An improved Bonferroni-type bound based on discrete
local maxima

We now derive an improved Bonferroni-type bound that bridges the gap between small FWHM ,
where BON is accurate, and large FWHM , where XEC is accurate. The improved Bonferroni-
type bound is the expected number of discrete local maxima (DLM) above threshold:

P < Ppru = ZIP’ ) >t and neighbouring Z’s < Z(x)). (11)

zeS

The 2D neighbours are those that differ by just one step in each lattice direction. In contrast,
Ppon is the expected number of lattice points above threshold, and Pxgc is the expected Euler
characteristic of the search region above threshold. We shall show that, like BON, DLM is
conservative, which is reassuring for practical applications, but unlike BON it is very accurate
for all FWHM ; for large FWHM and thresholds DLM converges to XEC.

The fact that DLM is an upper bound follows by noting that the event that {Z(z) > t¢}
somewhere in the search region is the union of the events {Z(z) > ¢ and neighbouring Z's <
Z(x)} over all lattice points, then applying the Bonferroni inequality. Formally,

fmxz(0) > 1} = Utz > 0 = J (260 > hnen (20) < 2)) (12)

zeSs
zeSs €S

where N' = N, is the set of neighbouring lattice points about x inside S. Then, by Bonferroni,

P=P (U{Z(m) > t}) <Y P{Z(x) > t} Nyen {Z(y) < Z(x)}) = Porn. (13)
x€S €S
We should note that (11)) is not strictly speaking an improved Bonferroni inequality, since
it is not a function of the probabilities of intersections of events {Z(x) > t}. This will be
discussed more in Section 5.

4 Evaluating the DLM P-value

It remains to calculate
P{Z(x) >t} Nyen {Z(y) < Z(2)}).

where N is the set of 2D neighbouring lattice points about z that differ by just one step in
each lattice direction. This looks like an integral in 2D + 1 Gaussian random variables, but
the amount of integration can be substantially reduced if we make more assumptions about the
spatial correlation structure of the data.

We shall assume that the spatial correlation function is locally separable, that is, the product
of the correlation functions along the lattice axes:

p(y, w) = Cor(Z( de Yds Wa), (14)

where y = (y1,...,yp) and w = (wy,...,wp) are neighbours of x, and p, is the spatial corre-
lation function along axis d. This correlation structure would arise, for instance, if a lattice of
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i.i.d. Gaussian random variables was convolved with a separable filter. A special case is the
Gaussian correlation function

p(y, w) = exp(—(ya — wa)A(ya — wa)'/2), (15)

where A = diag(\1,..., Ap).

If we first condition on the central Z(z), then the assumed separable correlation structure
(14) invokes a ‘Markovian’ property: it can be checked that neighbouring Z(y)’s on one lattice
axis are conditionally independent of neighbouring Z(w)’s on any other lattice axis. We can
now evaluate the conditional probability separately for each lattice axis, then multiply them
together, then finally integrate over the conditioned central Z(z). Formally, let e; be a D-vector
of zeros with dth component equal to vy, the step size in the dth direction. Define

Qza(2) 2 P(Z(y) < z,forally=x+te; €S| Z(x) = 2) (16)

and

PDLM—Z/ ( Qxd >¢()d2- (17)

€S

If the spatial correlation is separable then
Poinv = Pora.

To find a simple expression for @), we shall also assume that Z(z) is locally stationary, so
that we need just the two neighbour correlations on the same axis, given by

pa1 = Cor(Z(x), Z(x + eq)), paz = Cor(Z(x — eq), Z(z + €q)). (18)
Conditional on Z(x) = z, the neighbours have a bivariate Gaussian distribution
Z(x + ed) Pd1? 1- 1)31 Pd2 — /131
Z(x) ~N ) . 19
[Z(x—ed)H (@) 2([%12 paz =P L= (19)
Letting X, Y be independent standard Gaussian random variables, Z(x +e,4) can be written as

parz + X[ (1= 20% + par) /2 Y /(1 — p) 2. (20)

If both neighbours are in S and |pg1| < 1,

Qzi(z) = P(Xsinag £ Y cosag < hgz), (21)

1 —2p2 1-—
0y = sin~! Pd1 ‘;‘ Pd2 ’ hy = Pdl'
2(1 = p3) L+ pan

The necessary bivariate integral can be reduced to a single integral by changing to polar coor-
dinates x = rcosf, y = rsin § and integrating the radius r analytically. The remaining integral
over the angle @ is, for z > 0,

where

Qua(z) =1— %/ exp(—3h3z?/ sin 0)db, (22)

d



with a similar expression when z < 0. Recognizing that (22) is 1 — 2®(hyz) if oy = 0, and
changing the limits accordingly, gives, for all z,

_ 1 [oa
Quea(z) =1 —=20(hgz™) + —/ exp(—3h3z?/ sin® 0)db, (23)
T Jo

and 2™ = z if z > 0 and 0 otherwise. Let ¢(z) = exp(—2%/2)/v/2n. If z is on the boundary of

S with just one neighbour in axis direction d, then Q,q4(z) =1 — ®(hyz), and is equal to 1 if x
has no neighbours. This invokes a boundary correction, similar in purpose to the first D terms
in the summation in XEC (4).

5 Relationship between BON, XEC and DLM

When the voxels (lattice points) are independent, Pppy is very slightly smaller than Pgon but
slightly larger than the true P, specifically,

Poiv = (1 — (1= P)CPHINY N/ (2D + 1). (24)

In fact the difference is hardly noticeable in Figure 2 at FWHM = 0.
For large FWHM relative to vy, we now show that Ppry converges to Pxgc for large thresh-
olds when the correlation function is separable and Gaussian (15), specifically,

Poiat = Pxac - (1+O(1/1)). (25)

First change variables to u = exp(—3h3z%/sin”#) so that the integral in (23) becomes

ug(2) 1
h z/ du, 26
“ Jo —2loguy/—2logu — h2z? (26)

where wuq(z) = exp(—3h3z%/sin* ay). This is in fact a more convenient form for numerical
integration. When the mesh size vy approaches 0, pg &~ 1 — A\gv3/2 — 1, pga & 1 — 2 03 — 1
and hg ~ vgv/A/2 — 0. From (23) and (26)

Vazv/ Aa
V2T

where B < (2/y/7) exp(—22/4) /2%, which is negligible for large thresholds. Integrating over z
in (17) we obtain

Qua(z) = (1+B) (27)

Py & (H A 2) (IS|/N)(2m)~PHV/2P=Y oxpy (2 /2) - (1 4 O(1/4%)) (28)

which together with (6) gives (25).

Can we extend DLM to give the remaining terms? To do this, we might be tempted to
replace DLM with a ‘discrete EC’, by analogy with XEC. Another way of counting the EC
of the (continuously sampled) excursion set in 2D is to count the number of continuous local
maxima, minus saddle points, plus minima of Z(x) inside the excursion set. This suggests that
instead of counting discrete local maxima, we can subtract discrete local saddle points and add



discrete local minima. This turns out to be remarkably easy - the resulting adjustment to DLM
is to replace @@ by
Qua(z) =1— Y P(Z(y) >z | Z(x) = 2), (29)

y=zteq €S

a Bonferroni approximation on the two or less events {Z(y) > z,y =x +es € S | Z(z) = z}.
For separable correlations this removes the troublesome integral from (23)) and replaces it with
simply

Qua(z) =1—H#{y=a+te; € S}P(hy2). (30)

Unfortunately this heuristic does not work. The number of discrete local maxima minus saddle
points plus minima is not the EC of the discretely sampled excursion set, as can be seen from a
simple example of a diagonal “ridge” of local maxima, each contributing +1, with no discrete
saddle points or local minima, yet the excursion set can be simply connected with an EC of
+1.

There is one exception: in the 1D case the number of discrete local maxima minus minima
is the EC of the discretely sampled excursion set. The reason is that excursion sets in 1D
are intervals, and each interval must contain at least one local maximum and one less local
minimum. So in this case DLM with (29) counts the number of such intervals, and so it is an
upper bound on the P-value P, slightly tighter than the DLM with (23).

Another way of counting the intervals in the excursion set is to count the upcrossings of
the threshold ¢ by the process Z(x). In other words, for a 1D lattice, we count the events
{Z(z) < tNZ(x + e1) > t}. The expectation of this is in fact identical to the simplest
improved Bonferroni inequality (10)), so we are back where we started. Incidentally, this shows
why (10) works so well for 1D random fields. We might be tempted to extend this idea to
higher dimensions and count multidimensional upcrossings in a way similar to the Hadwiger
characteristic (Adler, 1981; Worsley, 1995b). However the extra complication, plus the tricky
question of how to add a boundary correction, does not seem to be worth the very slight
tightening of the bound on P.

Finally, of course, we could attack the discrete EC directly. It can be defined in 2D as
the number of lattice points, minus the number of lattice edges, plus the number of lattice
squares (or faces) inside the excursion set (Adler, 1981). We can then find its expectation, but
unfortunately the Markovian property for separable correlations does not help us to cut down
the number of integrals, which grows exponentially in D.

To pursue this properly, we could possibly resort to a specially developed discrete Morse
Theory (Forman, 1998; Lewiner et al., 2004) which incorporates events involving all 2P voxels
in a cell (cube of adjacent voxels) rather than the 2D + 1 neighbouring voxels on the axes.
There is nothing in principle to prevent us from calculating XEC defined in this way, but again
in practice there is no Markovian property and so no nice reduction in the number of multiple
integrals. Moreover the expected discrete EC is still only an approximation to P, not a bound.

6 Non-separable spatial correlation

What happens if we use pDLM to evaluate Ppry when in fact the correlation structure is not
separable? We now give an argument that Pppy is still conservative if the FWHM is large
relative to the lattice size. If this is so then the local correlation structure is approximately
Gaussian (15) with say A1, ..., Ap on the diagonal of A, but with non-zero off-diagonal elements.



Repeating the calculations that lead to (25) we get

D
= ({7
d=1

It can be shown using Hadamard’s inequality that for any positive definite matrix A the product
of the diagonal elements is greater than the determinant, so that the term in square brackets in
(31) is greater than or equal to 1. This implies that IBDLM > Pxgc for large FWHM. Further, it
is known that Pxgc is very accurate (Taylor et al., 2005) for large thresholds and large FWHM.
This implies that pDLM is conservative for large FWHM whenever Pxgc is accurate, i.e. when
the underlying correlation function is smooth. It is also slightly larger than the true P-value
when FWHM = 0, so this suggests that DLM is conservative for all FWHM even if the local
spatial correlation is not separable.

However it is not hard to construct examples where ]5DLM < Pprm. A simple example is a
“checker board” with Z; on white squares and Z5 on black squares, Z;, Z, ~ N(0, 1) indepen-
dently. Nevertheless we can show that Ppp is still conservative, using Slepian’s inequality as
follows. Consider a second example with Z; on every second square in both lattice directions,
Zy, Zy, Zs, Zy ~ N(0,1) independently. It can be checked that the correlation of the second
process is separable, with the same correlations as the checker board example on the two axes
but lower correlations off the two axes. By Slepian’s inequality (or by direct calculation) the P-
value of the maximum of the checker-board example is smaller than that of the second example,
which in turn is smaller than Ppp (since it equals the DLM for the second example).

We conjecture that Pppay is always conservative for any stationary process whether it is

separable or not. Some evidence for this from simulations is presented in Section 7' and Worsley
(2005).

Pxgpe - (1+0(1/1)). (31)

7 Simulations

The methods were compared on simulated data that matched the ‘bubbles’ data in Section 8. A
2562 image of independent zero mean, unit variance Gaussian random variables was smoothed
with a separable Gaussian shaped filter to generate a smooth random field Z(x). The filter was
normalised to preserve the unit variance of the smoothed image. Fourier methods were used
for the convolution, so the smoothed image was periodic. A search region S of size 224% was
chosen that was far enough from the boundary of the 2562 image that the periodicity could be
ignored. The maximum of Z(z) inside S was recorded.

This was repeated M = 9999 times. The (A + 1)Pth largest maximum of Z(x) inside S
estimates the true threshold (unbiasedly if the simulated values were uniform). The standard
deviation of this estimate was itself estimated by specifying a small width § = 0.02, then by

(M +1)(P+6)th— (M +1)(P—6)th [P(1-P)
20 M+2 (32)

This is based on the usual linear approximation to the variance of a function of a random
variable. The first term is an estimate of the inverse of the probability density, the second
square root is the standard deviation of the sample P-value. Results for a P = 0.05 threshold
are shown in Figure 2| for FWHM ranging from 0 (no smoothing) to 10 lattice steps.

The DLM P-value is always an accurate upper (conservative) bound on the true P-value,
which almost equals BON when FWHM = 0 and slightly overestimates XEC when FWHM > 6.
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In between DLM is better than either of them. The greatest discrepancy occurs at FWHM = 3,
where the DLM P-value is about half either of the others.

To investigate the conjecture that ]SDLM is always conservative, we carried out a small-scale
simulation by smoothing a 5? periodic 2D lattice of iid zero mean Gaussians with a kernel

b b
a a
b b

ISE ]

The P = 0.05 threshold was determined from 199,999 simulations for every value of a and b
between -1 and 1 in steps of 0.1. Ppry was estimated by the proportion of local maxima that
were above threshold, and Pppy was calculated from (18)-(23) assuming that the rest of the
spatial correlation was separable. The smoothed approximate P-values, with an approximate
standard deviation of 0.0001, are shown in Figure 3. For most of the values of a and b,
P < Ppim < 15DLM except a region where 0 < a < b < 1, but even here PDLM is still
conservative. Inside the shaded region

p(x + s1e1,x + s2e2) > p(x + s1e1,x) p(x, x + sqe2)

for all x and scalar s1, ss, so that here the process is “more correlated” than the product of
the correlations along the axes. By Slepian’s inequality its P-value is lower than that of this
associated separable process, for which Ppiy = PDLM. Hence we know that PDLM must be
conservative in the shaded region. A thorough simulation study of this conjecture is beyond
the scope of this paper.

8 Application to the ‘bubbles’ experiment

We give an application to the ‘bubbles’ technique for detecting areas of the face used to dis-
criminate fear from happiness. The data come from the control subjects analysed in Adolphs
et al. (2005). Subjects were shown a 2562 image of a face that is either fearful or happy. The
images were masked apart from a random number of localised regions or ‘bubbles’ that reveal
only selected parts of the face (see Figure 4). The subject was then asked whether the partially
revealed face is fearful or happy, and the trial was repeated ~2,970 times on each of 10 subjects.

The masked image was generated as follows. The original image I, was smoothed by an
isotropic Gaussian filter with FWHM; = 7.05 x 2i~!, to produce images I;, i = 1,...,5. The
smoothed images were differenced to produce images D; = I, — I;, i = 1,...,5 that reveal
image features at five different scales. Differenced image D; was then multiplied by a mask
consisting of the sum of a random number of isotropic Gaussian ‘bubbles’, each with width
2FWHM,;. The bubble centres were chosen at random from the 2562 pixels. The number of
bubbles for each scale was a multinomial random variable with probabilities inversely propor-
tional to bubble area (FWHM?), so that equal areas were revealed by each of the 5 bubble
sizes, on average. The total number of bubbles was chosen dynamically to maintain a 0.75
probability of correctly identifying the face.

At each pixel z, let pc be the proportion of bubbles centred at x in the nc correctly
classified stimuli, and let p; be the proportion in the n; incorrectly classified stimuli. The
number of bubbles per stimulus, m = 16.5 on average, was adjusted to maintain the success rate
nc/(ne +np) ~ 0.75. If face discrimination is unrelated to the bubbles, then these proportions

10



Figure 3: Support for the conjecture that Pppy is always conservative. A 52 array of i.i.d.
Gaussians was smoothed with a 3% kernel with a on the axes and b on the diagonals. The
P = 0.05 threshold was determined from 199,999 simulations and Pppy (solid contours) and
Ppiu (dashed contours) were determined for this threshold. The dotted line (b = a?) is where
the kernel, and hence the correlation, is separable, so that ]5DLM = Ppry. Inside the shaded
region Ppry is always conservative by Slepian’s inequality.

are expected to be p = m/256%. The test statistic Z(z) is then defined as

) = Pc — P _
V(1 —p)(1/nc + 1/m)

We only used the information contained in the bubble centres, ignoring the information con-
tained in the bubble FWHMs.

The unsmoothed image Z(z) is shown in the top left panel in Figure 5 (the search region S
is the interior of the black frame). This was then smoothed by Gaussian filters of FWHM=1.5,
3, 6, 12 and 24 pixels (top row) normalised to preserve the variance. Note that Z(z) is a
linear function of the ~29,700 binary images of presence/abscence of bubble centres (1=bubble
centred at x, O=otherwise), so that smoothing each of the binary images, then calculating a
Gaussian statistic for comparing their means, is equivalent (up to a constant) to smoothing
Z(x).

We now check the conditions for Ppry to be evaluated by the simpler form pDLM. First,
the noise component of the unsmoothed image Z(z) is well-approximated by i.i.d. Gaussian
random variables, by the Central Limit Theorem. Since the filter is axis-aligned Gaussian then
it is separable, which implies that its spatial correlation is also separable, thus satisfying the
condition (14) for Ppym = Pora.

Three methods for thresholding at P = 0.05 were used: BON, XEC and DLM (rows 2 to
4). Note that the third image (FWHM = 3) is where DLM outperformed both BON and XEC

(33)
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Figure 4: Bubbles experiment. The subject is asked to discriminate between the happy (a)
and fearful (b) faces on presentation of the stimulus (d) which is one of the two faces (here the
fearful face) partially revealed by random ’bubbles’ (c). The 2242 search region S is inside the
black frame in (a) and (b).

in the simulations (Figure 2)). The fourth image (FWHM = 12) is close to the smoothness
of the smallest bubbles (FWHM = 14.1). The BON method picks up some discriminatory
features in the eyes, but as the smoothing increases, it does not do as well as XEC. XEC on the
other hand, fails to pick up any features when there is little or no smoothing. DLM combines
the best of both: it does as well as BON at low smoothness, and almost as well as XEC at
high smoothness. Recall that DLM, like BON, is an upper bound, so it is always conservative,
whereas XEC is merely an approximation.

The analysis we have presented here is preliminary. A natural question is what amount of
smoothing to use. Although one can make a good argument that the amount of smoothing
should match the size of the bubble (here at least 14), from a purely inferential point of view,
the optimal smoothing should match the shape of the underlying signal, by the well-known
Matched Filter Theorem of signal processing. In other words, a filter the same size as the eyes
might be optimal at detecting bubble centres clustered in the eye region. A formal analysis can
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Figure 5: Bubbles analysis. Top row: Z(x) and 224% search region S (black frame) smoothed
with increasing FWHM Gaussian filters; Rows 2-4: images in first row thresholded at the P =
0.05 level using the BON, XEC and DLM methods. Excursion sets, revealing the underlying
fearful face, have been outlined in black to make them easier to identify. Note that DLM does
as well as either BON or XEC at detecting facial features that discriminate between fear and
happiness, the upper eyes and upper lip.

be done by searching over filter width, as well as pixel location, known as scale space (Siegmund
& Worsley, 1995). The price to pay for this is an increase in threshold; for searching over a 10
fold scale range from 10 to 100 FWHM the threshold is t = 4.31, as opposed to 4.23 — 2.95
at fixed scales from 10 to 100 FWHM . Scale space local maxima (in 3D) detected the eyes at
FWHM = 25 pixels (Znax ~ 17.2) and the mouth at a higher smoothness of FWHM = 40 pixels
(Zmax =~ 8.0) - there were no other local maxima above threshold. These estimated FWHMs
are indeed maximum likelihood estimates of the true FWHMs of the Gaussian shaped signals
added to the unsmoothed Z(z) (Siegmund & Worsley, 1995).

9 Discussion

We have derived an accurate upper bound for the maximum of a discrete lattice of (correlated)
Gaussian random variables inside a fixed search region of arbitrary shape. The DLM P-value
Ppru is simply the Bonferroni bound applied to discrete local maxima, as opposed to Pgon,
Bonferroni applied to the lattice values themselves. This very simple idea produces a bound
that is exponentially sharper than Pgon, and whose error is exponentially smaller than the
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P-value itself (see Appendix A).

The main attraction of Ppry comes when the lattice values are sampled from a smooth
continuous Gaussian field. As the mesh size decreases, Ppry does not become increasingly
conservative, despite the fact that the number of lattice points in the search region increases.
In contrast, Pgon or other Bonferroni approximations discussed in Section 2/ and Appendix
Al become increasingly conservative. This is true even though, for a fixed mesh size, there
is no gain in exponential accuracy of Ppry when compared to the second-order Bonferroni
correction including only nearest-neighbour edges. However, as the mesh size goes to zero,
Pprum approaches the P-value of the maximum of the continuous random field from which it
was sampled. In this sense it is the only approximation discussed here that “interpolates”
between Pgon and Pxgc: two approximations which we know are accurate at the extremes of
mesh size.

The evaluation of Ppry still requires an integral in as many variables as neighbours used
to determine the discrete local maxima, repeated at each lattice point in the search region.
Even if the lattice values are stationary, so that essentially only one multidimensional integral
is needed (ignoring the boundaries of the search region), this is still prohibitive if the number of
dimensions is large. However if we are willing to to assume that the local correlation structure
is separable, the calculations can be reduced to a single bivariate integral, giving Ppru (11).

The only remaining question is: if the spatial correlation is not separable, how close is ]5DLM
to the true P-value? In Section 6, we showed that PDLM is conservative if the observations were
finely sampled from any smooth stationary Gaussian field. We were able to construct a non-
smooth example where PDLM < Pprwum, yet despite this, PDLM was still conservative. We have
so far been unable to come up with a stationary lattice for which Ppi is anti-conservative.
Note that stationarity is not necessary for pDLM = Pprum, but it is needed to obtain a workable
expression for Pora.

A referee has asked why we cannot simply use simulations if we know the entire distribution
of the lattice random variables, as we do for the bubbles application. For the bubbles, generating
9999 smoothed 2562 Gaussian images is not too time consuming; this was how we obtained the
results in Figure 2. But our other main interest is applications to 3D brain imaging data,
where the images can be as large as 2563, which is currently prohibitively expensive to simulate
(Worsley, 2005). Moreover the exact correlation structure of the data is not known, neighbour
correlations must be estimated from residuals, and the residuals are not stationary. Most
importantly, the variances are not known, so the test statistic is a T statistic rather than a
Gaussian statistic, requiring an additional simulated image for each degree of freedom (typically
100). These issues are addressed in Worsley (2005).

Appendix
A Accuracy of the DLM P-value

In the continuous setting, Pxgc is known to be a very accurate approximation to (1). From
(Taylor et al., 2005)

PXEC = P . <1 + Oe(€_u2/202(z))>

for some critical variance 02(Z) of the process Z where O, is to be interpreted as “exponentially
of order of”. In other words, the relative error is exponentially small in 2.
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The expected number of local maxima above a given level is has the same exponential
behaviour, so one might ask how accurate Ppry is being the expected number of discrete local
maxima above a given level. Here, we show that its relative error is also exponentially small.
Our proof holds for any covariance structure as well as non-regular lattices, however we can only
work out Pppy explicitly only if the covariance function is a mixture of axis-aligned Gaussian
kernels, in which case Ppim = PDLM. It should be emphasized that the results below refer to
Pprv and not the approximation ISDLM.

THEOREM A.l Let (Z(x))zes be a centered, zero mean Gaussian field on the finite set S and
Ppi be the expected number of discrete local maxima of Z on S based on a given neighbourhood
structure (graph) G. Then,

2 1
lim inf —— log (P, —-P)=14+———-—— 34
gl = P =1t 7 ) oy
where the critical variance is given by
1
oo pn(Z, G) 2 max max L4 plz,y) (35)

veS yes\e 1 — p(z,y)

Above, p is the correlation function of Z and N =NU {z} is the set of neighbours of x
(including x itself) determined by G.

Proof. The proof is based on the following equality, assuming that ties have probability 0

P = ZP(Z(QZ) >t,7Z(x) > Z(y) Yy # x)

TE€S

(36)
= E (Lizw)>1 - Lz 2() viray)

zeSs

Therefore,

Porym — P = ZE (Lizws>t - (Lze)>20) weny — Lz@)>2() vyra))) -
xeS

Liz@)y>t11z@)>z) veny - <1 ~ Lzwy>2() vym}» :

Lz@>t - Lzw>2) weny - 1uyesw{z<y>>z<x>}>

I
=
N S /N

Liz@>t - 1uyes\]¢{Z(y>>Z<x>}) :
In other words,

Poin — P = ZP(Z(:L’) >t,3y e S\N st. Z(y) > Z(x)) .

Now,
Z(y) — p(r,y)Z(x)
1 —p(z,y)

z > 2} = { > 2(0)
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and for each y # x
Zo(y) & Z(y) — p(z,y)Z(x)
S T )

is a centered Gaussian random variable independent of Z(x) with variance

1+ p(x,y)

Therefore, the random field (Z*(y)),cq\ ¢ 15 independent of Z(z) and

Poiy— P = Z]P’(Z(a:) >t,dy € S\./\7 s.t. Z(y) > Z(;E))
€S
< ZIF’(Z(JC) >t,3y e S\ N st. Z(y) > t)
zeSs

=3 % B) B (tor(x)) (38)

1 1 2
<N—exp|— |14+ —"— .
t2 ( ( cDLM(Z G)) )

The last inequality is quite conservative as the number of neighbours whose variance achieves

02 pn(Z, G) = max max o2(x,y)
’ €S yeS\NF

is typically much smaller than N. O

The usefulness of this bound depends on a well-chosen G. For instance if Ggoy is a graph
with N nodes and no edges, then Ppiy = Pgon, and the theorem says exponential rate of
decay is given by the maximal off-diagonal entry in the correlation matrix of (Z(z)),es. When
the parameter space S consists of points of a regularly sampled lattice in R? with isotropic
covariance function and edge lengths v then

1+ p(v)
1—p(v)

In order to beat Bonferroni then, one should choose GG so that

Oz,DLM (Z,Gpon) =

UE,DLM(Za G) < Uz,DLM(Z7 GBon).

If S is as above and Gy is the nearest neighbours graph with 2D neighbours then the critical
variance is achieved at the 2nd nearest neighbours and

2 1+ p(\/ﬁv)
Uc,DLM(Z7 GnN) = —1 ~ p(ﬁv)

which is generally smaller than Jg’ pry(Z, Geon) particularly when p is Gaussian as will be the
case below.
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In summary, Ppry is exponentially sharper than Pgon. However, unlike Pxgc in the con-
tinuous setting, not all terms of Ppry are exponentially sharp in general. By terms, we are
referring to the terms in the inclusion-exclusion expansion

P(Z(x)>t,Z(x) > Z(y), Vy € N)

= E (Liz@n (1= Lo,entzw>26))) (39)
=P(Z(x)>t)— > P(Z(z) >, Z(y) > Z(x)) + ...
yeN

The third order terms are of the form
P(Z(x) > t,Z(z) > Z(y), Z(x) > Z(w)).

If the covariance function is Gaussian and w and y are chosen along different axes then the
above probability is exponentially of order

(- (or 828

and it can be easily verified that

L)
2(1 — p(v)) < 0gpru(Z, Gan).

Therefore, for v fixed, the third (and higher order) terms are exponentially smaller than the
error Ppiy — P.

B Non-lattice sampled data

In some cases the random field Z is not sampled on a lattice, but rather a triangulated surface
S. In this case, each point can have differing numbers of neighbours and there is no natural
correspondence between opposite pairs of edges, as in the lattice. However, the results of
Section |Al still hold: if we can evaluate Pppy for the graph based in the triangulation, we will
generally have a bound that is exponentially sharper than Bonferroni. This implicitly assumes
that connectivity of nodes in the triangulated surface is at least approximately related to the
covariance of Z, which would be the case of Z is thought of as the restriction of an isotropic
random field to the triangulated surface S. The results of Section Al show that, even when it is
possible to evaluate Pppy not all terms in the expansion (39) are exponentially sharp. In fact,
the only terms that were exponentially sharp were the terms

P(Z(z) > t, Z(y) > Z(x),y € N)
=P(Z(x) >t,Z%(y) > Z(x),y € N)

z (40)
_ / B(z/o(x,))d(2) dz

This suggests an approximation of Ppyy including only the terms (40), i.e.

Pory =~ NO(t) = > ) / N B(z/0,(x,y))p(2) dz. (41)

zeS yeN 7t
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However, this would not be a bound on P. To remedy this we could include the next term in
the inclusion exclusion expansion

YD P Z) >t Z(y) > Z(x), Z(w) > Z(x)) (42)

€S y’weNzy#w

yielding a final upper bound

Powe < N8(0) = S5 [ 80,0 00)6) 2

zeS yeN t

[e%s) e_'UE;,%/,wU,/2 (43)
LDINDS | s ) o) d
xES y,we./\/',y;éw t [2700)2 27T|217y»w‘
where (y,w)—p(y,z)p(w,T)
oz, oY, w)—p\Yy,x)p{w,T
S = (p(y,w>-£<y,gcy52<w,x) (1—p(y,x>)<1—p<w,x)>> _ (44)
(1—p(y,2))(1—p(w,x)) Or (I, UJ)

While this is indeed an upper bound for Ppry and hence for P itself, the results of Section
Al suggest the added accuracy obtained by adding these terms is generally undetectable on an
exponential scale. Unfortunately, as the mesh of the surface goes to 0, the approximation (43)
does not approach Pxgc if D > 2.

With highly convoluted triangulations such as the cortical surface, it may be the case that
the nearest point to a given node is not a neighbour of the given node. In the results of (Taylor
et al., 2005), in the continuous setting, this is analogous to a “global overlap”. To improve the
accuracy of (43)) it is likely a good idea to add such points to N.
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