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Abstract

In this paper, a proof of a part of a conjecture raised in [1] concerning existence and global
uniqueness of an asymptotically stable periodic orbit in a fourth-order piecewise linear ordinary
differential equation is presented. The fourth-order equation comes from the study of traveling
wave patterns in a signed Kuramoto-Sivashinsky equation with absorption. The proof is twofold.
First, the problem of solving for the periodic orbit is transformed into a zero finding problem
on R4, which is solved with a computer-assisted proof based on Newton’s method and the
contraction mapping theorem. Second, the rigorous bounds about the periodic orbit in phase
space are combined with the theory of discontinuous dynamical systems to prove that the orbit
is asymptotically stable.
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1 Introduction

The Kuramoto-Sivashinsky equation

ut +∇4u+∇2u− (∇2u)2 = 0, (1)

where ∇2 is the Laplace operator and ∇4 is the biharmonic operator, is a fourth-order semilinear
parabolic PDE which was originally introduced to model flame front propagation and later became
a popular model to analyze weak turbulence or spatiotemporal chaos [2, 3, 4, 5, 6, 7]. In an attempt
to study extinction phenomena, Galaktionov and Svirshchevskii consider in [1] a modification of
(1), namely the signed KS equation with absorption

ut +∇4u+ sign(u)− (∇2u)2 = 0. (2)

Considering equation (2) on the real line (i.e. u = u(ξ, t), with ξ ∈ R and t ≥ 0), and following the
approach of [1], we plug the traveling wave ansatz u(ξ, t) = f(y) (with y

def
= ξ − ct) in (2) which

leads to the problem

−cf ′(y) + f (4)(y) + signf(y)− (f ′′(y))2 = 0, y ∈ (0,∞) and f(0) = 0.
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Following the approach of [1] (based on their experience studying the thin film equation), we only
keep the highest derivative term in the equation and this yields

f (4)(y) + signf(y) = 0, y ∈ (0,∞) and f(0) = 0. (3)

To capture the oscillatory component ϕ(s) in the solution of (3), we change coordinates (y, f(y)) 7→
(s, ϕ(s)) via

f(y) = y4ϕ(s), with s
def
= ln y

and plugging the transformation in (3) leads to the fourth-order piecewise linear ordinary differential
equation

ϕ(4)(s) + 10ϕ′′′(s) + 35ϕ′′(s) + 50ϕ′(s) + 24ϕ(s) + sign(ϕ(s)) = 0. (4)

This change of coordinates turns the search for a blowup solution into the search for a periodic
solution. The purpose of the present paper is to give a partial proof of the Conjecture 3.2 on page
150 of [1], about solutions of equation (4), which we now state as a theorem.

Theorem 1.1. Equation (4) has a nontrivial asymptotically stable periodic solution.

The periodic solution of Theorem 1.1 is portrayed in Figure 1 and the corresponding traveling
wave pattern u(ξ, t) = f(ξ − ct) = (ξ − ct)4ϕ(ln(ξ − ct)) is plotted in Figure 2. Note that we set
f(ξ − ct) = 0 for ξ − ct ≤ 0, and that we did not solve for the wave speed c.
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Figure 1: Profile of the periodic solution of Theorem 1.1 (left) and the corresponding orbit in the
phase space (right).
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Figure 2: Different snapshots of u(ξ, t) = f(ξ − ct) = (ξ − ct)4ϕ(ln(ξ − ct)).
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The proof of Theorem 1.1 has two parts. The first part of the proof (existence) is presented in
Section 2, where the problem of finding the periodic solution ϕ(s) of (4) is transformed (via the
symmetry argument of Lemma 2.1) into a zero finding problem F (a) = 0 where F : R4 → R4 is
defined in (12). Proving the existence of ã ∈ R4 such that F (ã) = 0 is done with a computer-assisted
proof based on a Newton-Kantorovich type theorem (Theorem 2.2). The second part of the proof
is presented in Section 3, where the rigorous enclosure of the periodic solution is combined with the
theory of discontinuous dynamical systems to prove that the orbit is asymptotically stable. These
two parts conclude the proof of Theorem 1.1.

Remark 1.2. Note that the fourth order ODE (3) is a special case of equation (Uq) as considered
in [8] given by f (4)(y) + |f(y)|q−1f(y) = 0, but with the choice q = 0. In [8], the specific case q = 3
was studied in details and the periodic orbit proved to exist there is similar (same symmetries) but
with different stability properties.

Remark 1.3. By the time this paper was submitted, an alternative purely analytic proof of Theo-
rem 1.1 was proposed independently in [9].

2 Existence: a computer-assisted proof

In this section, we prove the existence of a periodic solution ϕ(s) of (4). To achieve this goal, we
reformulate this into a zero finding problem F (a) = 0 defined on R4. Proving the existence of a
solution is done by verifying the hypotheses of Theorem 2.2 with the help of the digital computer
and interval arithmetic (e.g. see [10, 11]).

We begin by making the change of variables x1
def
= ϕ, x2

def
= ϕ′, x3

def
= ϕ′′ and x4

def
= ϕ′′′ to rewrite

the fourth-order equation (4) as the system

ẋ = Mx+ g(x)
def
=


0 1 0 0
0 0 1 0
0 0 0 1
−24 −50 −35 −10



x1

x2

x3

x4

+


0
0
0

−sign(x1)

 . (5)

Equation (5) is a piecewise smooth dynamical system and changes rule as x = (x1, x2, x3, x4)
goes through the switching manifold defined by

Σ
def
= {x = (x1, x2, x3, x4) ∈ R4 : x1 = 0}.

The switching manifold Σ separates the phase space R4 into the two regions R+ and R− defined
by R+

def
= {x ∈ R4 : x1 ≥ 0} and R− def

= {x ∈ R4 : x1 ≤ 0}. Denoting b
def
= (0, 0, 0,−1), system (5)

can then be written as

ẋ =

{
f+(x)

def
= Mx+ b, x ∈ R+

f−(x)
def
= Mx− b, x ∈ R−.

(6)

Given b0 ∈ {±b}, the unique solution of ẋ = Mx+ b0, x(0) = x0 ∈ R4 is given by

t 7→ eMtx0 + eMt

∫ t

0
e−Msb0 ds = eMt

(
x0 +M−1b0

)
−M−1b0. (7)

Note that

M−1 =


−50

24 −35
24 −10

24 − 1
24

1 0 0 0
0 1 0 0
0 0 1 0


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Moreover, M = PDP−1, eMt = PeDtP−1 where eDt = diag
(
e−4t e−3t e−2t e−t

)
and

P =


1 1 1 1
−4 −3 −2 −1
16 9 4 1
−64 −27 −8 −1

 and P−1 =


−1 −11

6 −1 −1
6

4 7 7
2

1
2

−6 −19
2 −4 −1

2
4 13

3
3
2

1
6

 . (8)

We now introduce a result which exploits the symmetry of the problem and establishes a mech-
anism to obtain a periodic solution of (6).

Lemma 2.1. If there exist L > 0 and a solution φ : [0, L]→ R4 of ẋ = f+(x) with

φ(L) = −φ(0) (9)

and
φ([0, L]) ⊂ R+, (10)

then φ(0), φ(L) ∈ Σ and Γ : [0, 2L]→ R4 defined by

Γ(t)
def
=

{
φ(t), t ∈ [0, L]

−φ(t− L), t ∈ [L, 2L]
(11)

is a 2L-periodic solution of (6).

Proof. First, φ([0, L]) ⊂ R+ implies that (φ(0))1, (φ(L))1 ≥ 0 and then 0 ≤ (φ(L))1 = −(φ(0))1 ≤
0. Hence, (φ(0))1 = (φ(L))1 = 0, that is φ(0), φ(L) ∈ Σ.

Now, for t ∈ [L, 2L], ψ(t)
def
= −φ(t − L) solves ẋ = f−(x), as ψ′(t) = −φ′(t − L) = M(−φ(t −

L)) − b = Mψ(t) − b = f−(ψ(t)). Also φ([0, L]) ⊂ R+ implies that ψ([L, 2L]) ⊂ R−. Moreover,
ψ(L) = −φ(0) = φ(L) = −ψ(2L).

By definition of Γ(t) in (11), Γ([0, L]) ⊂ R+, Γ([L, 2L]) ⊂ R− and φ(L) = −φ(L−L) = −φ(0).
Hence Γ is continuous at t = L. Finally, since Γ(0) = φ(0) = −φ(L) = −φ(2L − L) = Γ(2L), we
conclude that Γ(t) is a 2L-periodic orbit of (6).

To find the segment of the orbit φ : [0, L]→ R4 solving ẋ = f+(x) = Mx+ b as in Lemma 2.1
we use formula (7), impose that the segment begins in the switching manifold (i.e. φ(0) ∈ Σ) and
that φ(L) = −φ(0). Note that if φ(0) ∈ Σ, then φ(0) = (0, a2, a3, a4) for some a2, a3, a4 ∈ R. Using
(7), the condition φ(L) = −φ(0) reduces to solving

0 = φ(0) + φ(L)

= φ(0) + eMLφ(0) + eML

∫ L

0
e−Msb ds

= P (I + eDL)P−1


0
a2

a3

a4

+

∫ L

0
PeD(L−s)P−1b ds.

Denote a
def
= (L, a2, a3, a4) and let

F (a) = F


L
a2

a3

a4

 def
= P

(
eDL + I

)
P−1


0
a2

a3

a4

+

∫ L

0
PeD(L−s)P−1b ds. (12)
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To prove the existence of a periodic solution ϕ(s) of (4), it is sufficient to prove the existence
of a zero of F : R4 → R4 defined in (12) and then to verify the extra condition (10). While the
rigorous verification of (10) is done a-posteriori using interval arithmetics, the existence of a zero
of F is done using the radii polynomial approach (e.g. see [12, 13, 14]) which is essentially the
Newton-Kantorovich theorem (e.g. see [15]). We now introduce this approach for a general C2

map defined on Rn. Endow Rn with the supremum norm ‖a‖∞ = maxi=1,...,n |ai| and denote by

Br(b)
def
= {a ∈ Rn | ‖a− b‖∞ ≤ r} ⊂ Rn the closed ball of radius r and centered at b.

Theorem 2.2. Let F : Rn → Rn be a C2 map. Consider ā ∈ Rn (typically a numerical approxima-
tion with F (ā) ≈ 0). Assume that the Jacobian matrix DF (ā) is invertible and let A

def
= DF (ā)−1.

Let Y0 ≥ 0 be any number satisfying
‖AF (ā)‖∞ ≤ Y0. (13)

Given a positive radius r∗ > 0, let Z2 = Z2(r∗) be any number satisfying

sup
a∈Br∗ (ā)

(
max

1≤i≤n

∑
1≤k,m≤n

∣∣∣ ∑
1≤j≤n

AijD
2
kmFj

(
a
)∣∣∣) ≤ Z2. (14)

Define the radii polynomial by
p(r)

def
= Z2r

2 − r + Y0. (15)

If there exists r0 ∈ (0, r∗] with p(r0) < 0, then there exists a unique ã ∈ Br0(ā) such that F (ã) = 0.

Proof. Let r ≤ r∗ and consider c ∈ Br(ā). Applying the Mean Value Inequality and using (14),

|||A(DF (c)−DF (ā))|||∞ ≤ sup
‖h‖∞=1

sup
a∈Br(ā)

|||AD2F (a)h|||∞‖w − ā‖∞ ≤ Z2r, (16)

where ||| · |||∞ denotes matrix norm. Define the Newton-like operator T : Rn → Rn by T (a) =
a − AF (a). Since A is invertible, F (ã) = 0 if and only if T (ã) = ã. Let r0 > 0 be such that
p(r0) < 0. Hence Z2r

2
0 + Y0 < r0 and Z2r0 + Y0

r0
< 1. Since Y0, Z2 ≥ 0, one gets that

Z2r0 < 1. (17)

For any a ∈ Br0(ā), apply (16) to get

|||DT (a)|||∞ = |||I −ADF (a)|||∞ = |||A[DF (ā)−DF (a)]|||∞ ≤ Z2r0 < 1.

Hence,

‖T (a)− ā‖∞ ≤ ‖T (a)− T (ā)‖∞ + ‖T (ā)− ā‖∞
≤ sup

c∈Br0 (ā)

|||DT (c)|||∞‖a− ā‖∞ + ‖AF (ā)‖∞

≤ (Z2r0) r0 + Y0 < r0.

Then T maps Br0(ā) into itself. Finally, given a1, a2 ∈ Br0(ā) combine (17) with the Mean Value
Inequality to get

‖T (a1)− T (a2)‖∞ ≤ sup
c∈Br0 (ā)

|||DT (c)|||∞‖a1 − a2‖∞ ≤ (Z2r0)‖a1 − a2‖∞ ≤ κ‖a1 − a2‖∞,

where κ
def
= Z2r0 < 1. Then, by the Contraction Mapping Theorem, T has a unique fixed point

ã ∈ Br0(ā). It follows from the invertibility of A that ã is the unique zero of F in Br0(ā).
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We now apply Theorem 2.2 to prove the existence of a zero of F defined in (12). This begins
by computing an approximate solution. Applying Newton’s method, we find an approximate zero
of F given by

ā =


1.418316134968973

2.245235091886104× 10−2

8.358590910573891× 10−3

−4.883983455701284× 10−2

 . (18)

Then, using INTLAB (see [11]) we compute rigorous enclosures of DF (ā) and A
def
= DF (ā)−1.

We then verify rigorously that Y0
def
= 7.4 × 10−15 > ‖AF (ā)‖∞, which settles the computation of

the bound (13).
The next bound to compute is Z2 satisfying (14). The only non zero second partial derivatives

are the terms
∂2Fj

∂a1∂ak
for j, k ∈ {1, . . . , 4}, where we note that by Clairaut’s theorem

∂2Fj

∂a1∂ak
=

∂2Fj

∂ak∂a1
for k ∈ {2, 3, 4}, j ∈ {1, . . . , 4}. Hence, we can write the bound (14) as

Z2(r∗) ≥ max
1≤i≤4

 sup
c∈Br∗ (ā)

∣∣∣∣∣∣
∑

1≤j≤4

Ai,j
∂2Fj

∂2a1
(c)

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑

1≤j≤4

Ai,j
∂2Fj

∂a1∂a2
(c)

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
∑

1≤j≤4

Ai,j
∂2Fj

∂a1∂a3
(c)

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑

1≤j≤4

Ai,j
∂2Fj

∂a1∂a4
(c)

∣∣∣∣∣∣
 . (19)

Choosing r∗ = 0.01 we use interval arithmetic to obtain that Z2
def
= 41 satisfies (19).

Therefore, for r 6 r∗ the radii polynomial is given by

p(r) = 41r2 − r + 7.4× 10−15.

Using interval arithmetic, we show that for every r0 ∈ [7.5×10−15, 0.01], p(r0) < 0. By Theorem 2.2,
there exists a unique zero ã of F in B7.5×10−15(ā). Denote ã = (L̃, ã2, ã3, ã4). Then since |L̃− ā1| ≤
‖ã− ā‖∞ ≤ 7.5× 10−15 and ā1 = 1.418316134968973, we conclude that L̃ > 0. By construction,

φ̃(t)
def
= eMt

(
φ̃(0) +M−1b

)
−M−1b = eMt




0
ã2

ã3

ã4

+M−1b

−M−1b (20)

defines a solution φ̃ : [0, L̃]→ R4 of ẋ = f+(x) with φ̃(L̃) = −φ̃(0). The last hypothesis which needs
to be verified to apply Lemma 2.1 is the condition (10), that is φ̃([0, L̃]) ⊂ R+. Using a MATLAB
program using INTLAB, we consider a uniform time mesh (of size 300) of the time interval [0, L̃],
that is 0 = t0 < t1 < · · · < t300 = L̃. For each mesh interval Ik = [tk−1, tk] (k = 1, . . . , 300), the code
computes an interval enclosure of φ̃(Ik) using formula (20). Then the code verifies that φ̃1(t) > 0
for all t ∈ Ik and k = k1, . . . , k2 for some 1 < k1 < k2 < 300. This implies that φ̃([tk1−1, tk2 ]) ⊂ R+.
Afterward, it verifies that φ̃′1(t) = φ̃2(t) > 0 for all t ∈ Ik and k = 1, . . . , k1 − 1. Hence φ̃1(t) is
strictly increasing over the interval [0, tk1−1], and since φ̃1(0) = 0, it follows that φ̃1(t) > 0 for all
t ∈ (0, tk1−1], that is φ̃([0, tk1−1]) ⊂ R+. Similarly, the code verifies that φ̃′1(t) = φ̃2(t) < 0 for all
t ∈ Ik and k = k2 + 1, . . . , 300. Hence φ̃1(t) is strictly decreasing over the interval [tk2 , L̃], and since
φ̃1(L̃) = 0, it follows that φ̃1(t) > 0 for all t ∈ [tk2 , L̃), that is φ̃([tk2 , L̃]) ⊂ R+. We conclude that

φ̃([0, L̃]) = φ̃([0, tk1−1]) ∪ φ̃([tk1−1, tk2 ]) ∪ φ̃([tk2 , L̃]) ⊂ R+.
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Hence φ̃ : [0, L̃]→ R4 verifies the hypotheses of Lemma 2.1. We conclude that φ̃(0), φ̃(L̃) ∈ Σ and
that

Γ̃(t)
def
=

{
φ̃(t), t ∈ [0, L̃]

−φ̃(t− L̃), t ∈ [L̃, 2L̃]
(21)

is a 2L̃-periodic solution of (6). All the computational steps described in this section are carried
out in the MATLAB program Proof.m available at [16].

3 Asymptotic stability

In this section, we demonstrate that the 2L̃-periodic orbit Γ̃(t) defined in (21) is asymptotically
stable using the theory of discontinuous dynamical systems (e.g. see [17]). We do this by computing
the monodromy matrixX(2L̃) of Γ̃ and show that all its nontrivial Floquet multipliers have modulus
less than one.

Define h : R4 → R by h(x)
def
= x1 so that the switching manifold is given by

Σ = {x ∈ R4 : h(x) = 0}.

Denote by ã(1) def
= φ̃(L̃) = (0,−ã2,−ã3,−ã4)T the point at which Γ̃ crosses Σ coming from R+ and

entering in R−. Similarly, denote by ã(2) def
= (0, ã2, ã3, ã4)T the point at which Γ̃ crosses Σ coming

from R− and entering in R+. For that reason, Γ̃ is called a crossing periodic orbit (e.g. see [18, 19]).
Denote by T̃

def
= 2L̃ the period of Γ̃, t̄

def
= L̃, and denote by Φ(t, x0) the solution of (6) at time t with

initial condition x0. Then (i.e. see [20]) the monodromy matrix is given by

X(T̃ ) = X(T̃ , t̄)S−+(ã(2))X(t̄, 0)S+−(ã(1)) (22)

where

S+−(ã(1))
def
= I +

(
(f− − f+)

∇hT · f+
∇hT

)
(ã(1))

S−+(ã(2))
def
= I +

(
(f+ − f−)

∇hT · f−
∇hT

)
(ã(2))

are called the saltation matrices, and where the fundamental matrix solutions X(t, 0) and X(t, t̄)
satisfy

Ẋ(t, 0) = Df−(Φ(t, ã(1)))X(t, 0) = MX(t, 0), for t ∈ [0, L̃], with X(0, 0) = I

Ẋ(t, L̃) = Df+(Φ(t, ã(1)))X(t, L) = MX(t, L̃), for t ∈ [L̃, 2L̃], with X(L̃, L̃) = I.

This implies that X(t, 0) = eMt and therefore X(t̄, 0) = X(L̃, 0) = eML̃. Similarly, X(t, t̄) =

eM(t−L̃) and then X(T̃ , t̄) = X(2L̃, L̃) = eML̃.
Since ∇h = (1, 0, 0, 0)T we obtain that ∇hT · f+(ã(1)) = −ã2 and ∇hT · f−(ã(2)) = ã2. Simple

computations yield

S+−(ã(1)) =


1 0 0 0
0 1 0 0
0 0 1 0
− 2

ã2
0 0 1

 = S−+(ã(2)).
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Hence, the monodromy matrix is given by

X(2L̃) = eML̃


1 0 0 0
0 1 0 0
0 0 1 0
− 2

ã2
0 0 1

 eML̃


1 0 0 0
0 1 0 0
0 0 1 0
− 2

ã2
0 0 1

 . (23)

Using interval arithmetics and that |L̃− ā1|, |ã2 − ā2| ≤ 7.5× 10−15, we compute rigorously an
interval enclosure of (23) and using the rigorous computational method from [21] we prove that
the spectrum σ(X(2L̃)) of X(2L̃) satisfies

σ(X(2L̃)) ⊂
4⋃

i=1

Bi

where

B1
def
= [0.99999989798820, 1.00000010201179]

B2
def
= [0.05862265751705, 0.05862286154064]

B3
def
= [0.00000059034712, 0.00000079437071]

B4
def
= [0.00001170839977, 0.00001191242336].

This rigorous computation is carried out in the MATLAB program Proof.m available at [16]. From
this, we conclude that three Floquet multipliers of Γ̃ have modulus strictly less than one. This
concludes the proof that the 2L̃-periodic orbit Γ̃(t) defined in (21) is asymptotically stable, and
hence the proof of Theorem 1.1.
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