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Abstract

In this paper, a proof of a part of a conjecture raised in [1] concerning existence and global
uniqueness of an asymptotically stable periodic orbit in a fourth-order piecewise linear ordinary
differential equation is presented. The fourth-order equation comes from the study of traveling
wave patterns in a signed Kuramoto-Sivashinsky equation with absorption. The proof is twofold.
First, the problem of solving for the periodic orbit is transformed into a zero finding problem
on R*, which is solved with a computer-assisted proof based on Newton’s method and the
contraction mapping theorem. Second, the rigorous bounds about the periodic orbit in phase
space are combined with the theory of discontinuous dynamical systems to prove that the orbit
is asymptotically stable.
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1 Introduction
The Kuramoto-Sivashinsky equation
ug + Vi + V3u — (V2u)? =0, (1)

where V2 is the Laplace operator and V* is the biharmonic operator, is a fourth-order semilinear
parabolic PDE which was originally introduced to model flame front propagation and later became
a popular model to analyze weak turbulence or spatiotemporal chaos [2, 3, 4, 5, 6, 7]. In an attempt
to study extinction phenomena, Galaktionov and Svirshchevskii consider in [1] a modification of
(1), namely the signed KS equation with absorption

ug + Vi + sign(u) — (V2u)? = 0. (2)

Considering equation (2) on the real line (i.e. u = u(&,t), with £ € R and ¢ > 0), and following the
def

approach of [1], we plug the traveling wave ansatz u({,t) = f(y) (with y = £ — ¢t) in (2) which
leads to the problem

—cf'(y) + fW(y) +signf(y) — (f"(1)* =0, y € (0,00) and f(0) = 0.
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Following the approach of [1] (based on their experience studying the thin film equation), we only
keep the highest derivative term in the equation and this yields

F@(y) +signf(y) =0, y € (0,00) and £(0) = 0. (3)

To capture the oscillatory component ¢(s) in the solution of (3), we change coordinates (y, f(y)) —
(s,0(s)) via
fy) =y'e(s), with s=ZIny
and plugging the transformation in (3) leads to the fourth-order piecewise linear ordinary differential
equation
™ (s) + 106" (5) + 35" (s) + 50/ (s) + 24¢(s) + sign(eo(s)) = 0. (4)
This change of coordinates turns the search for a blowup solution into the search for a periodic

solution. The purpose of the present paper is to give a partial proof of the Conjecture 3.2 on page
150 of [1], about solutions of equation (4), which we now state as a theorem.

Theorem 1.1. Equation (4) has a nontrivial asymptotically stable periodic solution.

The periodic solution of Theorem 1.1 is portrayed in Figure 1 and the corresponding traveling
wave pattern u(&,t) = f(€ —ct) = (€ — ct)*o(In(€ — ct)) is plotted in Figure 2. Note that we set
f(&—ct) =0 for £ — ct <0, and that we did not solve for the wave speed c.

0.01

0.005

o(s)

-0.005

-0.01

Figure 1: Profile of the periodic solution of Theorem 1.1 (left) and the corresponding orbit in the
phase space (right).
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Figure 2: Different snapshots of u(&,t) = f(& — ct) = (€ — ct)*o(In(& — ct)).



The proof of Theorem 1.1 has two parts. The first part of the proof (existence) is presented in
Section 2, where the problem of finding the periodic solution ¢(s) of (4) is transformed (via the
symmetry argument of Lemma 2.1) into a zero finding problem F(a) = 0 where F : R* — R* is
defined in (12). Proving the existence of @ € R* such that F(a@) = 0 is done with a computer-assisted
proof based on a Newton-Kantorovich type theorem (Theorem 2.2). The second part of the proof
is presented in Section 3, where the rigorous enclosure of the periodic solution is combined with the
theory of discontinuous dynamical systems to prove that the orbit is asymptotically stable. These
two parts conclude the proof of Theorem 1.1.

Remark 1.2. Note that the fourth order ODE (3) is a special case of equation (Uq) as considered
in [8] given by f® (y) + | f(y)|7" 1 f(y) = 0, but with the choice ¢ = 0. In [8], the specific case ¢ = 3
was studied in details and the periodic orbit proved to exist there is similar (same symmetries) but
with different stability properties.

Remark 1.3. By the time this paper was submitted, an alternative purely analytic proof of Theo-
rem 1.1 was proposed independently in [9].

2 Existence: a computer-assisted proof

In this section, we prove the existence of a periodic solution ¢(s) of (4). To achieve this goal, we
reformulate this into a zero finding problem F(a) = 0 defined on R*. Proving the existence of a
solution is done by verifying the hypotheses of Theorem 2.2 with the help of the digital computer
and interval arithmetic (e.g. see [10, 11]).

We begin by making the change of variables 21 & ¢, 20 = ¢/, 23 = ¢” and z4 = ¢ to rewrite
the fourth-order equation (4) as the system
0 1 0 0 1 0
. def 0 0 1 0 9 0
E=Metgle) =1 0 0 1] e | T 0 ' (5)
—-24 =50 =35 =10/ \ay —sign(z1)

Equation (5) is a piecewise smooth dynamical system and changes rule as x = (z1, 22,23, 24)
goes through the switching manifold defined by

S E {z = (21, 19,23, 24) € RY : 21 = 0},

The switching manifold 3 separates the phase space R* into the two regions R, and R_ defined
by Ry € {z eR*: 2, >0} and R_ < {z € R* : 2; < 0}. Denoting b < (0,0,0, —1), system (5)

can then be written as

(6)

def

f-(x) =Mxz—-b, z€R_.
Given by € {£b}, the unique solution of & = Mx + by, (0) = zg € R* is given by

. {er(:p)d:Cfo—Fb, r € R4

¢
t— eMtzy + eMt/ e Mspyds = Mt (:Ug + Mﬁlbg) — M~ 1b. (7)
0

Note that
50 35 10 1

24 24 24
1 0 0

2
0
0 1 0 0
0 0 1 0

M=



Moreover, M = PDP~!, Mt = PePtP~1 where eP! = diag (e*4t e 3t g2t e*t) and

1 1 1 1 -1 -4 1 -3

4 =3 -2 -1 RTINS A
P=l1w6 o 4 1| P =] v 5 7 (8)

13 3 1

—64 —27 -8 -1 4 B 3 1

We now introduce a result which exploits the symmetry of the problem and establishes a mech-
anism to obtain a periodic solution of (6).

Lemma 2.1. If there exist L > 0 and a solution ¢ : [0, L] — R* of & = fy(z) with

¢(L) = —¢(0) 9)
and
([0, L]) C R+, (10)
then ¢(0),¢(L) € ¥ and T : [0,2L] — R* defined by
D) & {¢>(t), telo,L] a1
—¢(t— L), te][L,2L]

is a 2L-periodic solution of (6).

Proof. First, ¢([0,L]) C R4 implies that (¢(0))1, (¢(L )) > 0 and then 0 < (¢(L))1 = —(¢(0))1 <
0. Hence, (6(0)1 = (9(L))1 = 0, that is 6(0),6(L) €

Now, for t € [L,2L], ¥(t) = —¢(t — L) solves & = f,(ac), as Y'(t) = —¢/(t — L) = M( ot —
L)) —b= My(t)—b= f_((t). Also ¢(]0,L]) C R+ implies that ¥([L,2L]) C R_. Moreover,

(L) = =¢(0) = ¢(L) = —¢(2L).

By definition of I'(¢) in (11), I'([0, L]) C R4, T'([L,2L]) C R— and ¢(L ) = —QS(L L) =—¢(0).
Hence I is continuous at ¢t = L. Finally, since I'(0) = ¢(0) = —¢(L) = —¢(2L — L) = I'(2L), we
conclude that I'(¢) is a 2L-periodic orbit of (6). O

To find the segment of the orbit ¢ : [0, L] — R?* solving # = fy(z) = Mx + b as in Lemma 2.1
we use formula (7), impose that the segment begins in the switching manifold (i.e. ¢(0) € ) and
that ¢(L) = —¢(0). Note that if ¢(0) € X, then ¢(0) = (0, az, as, ay) for some a9, as, aq € R. Using
(7), the condition ¢(L) = —¢(0) reduces to solving

0=¢(0) + ¢(L)
L
= 6(0) + eMLg(0) + eML/ e Msh ds
0

0
L
= P(I + ¢PLypt 22 +/ PePL=s) p=1p gs.
3 0
a4
Denote a = (L,az,as,a4) and let
L 0
L
F(a)=F Zi PPl P! Zz +/ PePE=9) p=1p gs. (12)
0

a4 a4



To prove the existence of a periodic solution ¢(s) of (4), it is sufficient to prove the existence
of a zero of F' : R* — R* defined in (12) and then to verify the extra condition (10). While the
rigorous verification of (10) is done a-posteriori using interval arithmetics, the existence of a zero
of F' is done using the radii polynomial approach (e.g. see [12, 13, 14]) which is essentially the
Newton-Kantorovich theorem (e.g. see [15]). We now introduce this approach for a general C?
map defined on R”. Endow R" with the supremum norm ||a|/sc = max;—1 ., |a;| and denote by
Br(b) € {a e R" | ||a — b|jos <7} C R" the closed ball of radius r and centered at b.

Theorem 2.2. Let F: R" — R" be a C? map. Consider a € R™ (typically a numerical appm:m'ma—
dcf

tion with F(a) ~ 0). Assume that the Jacobian matriz DF(a) is invertible and let A= DF(a)~*
Let Yo > 0 be any number satisfying
IAF(@)]le < Yo (13)

Given a positive radius . > 0, let Zy = Zs(ry) be any number satisfying
sup (1@?31 Z ‘ Z AUka )D < Zs. (14)
a€Br, (a) 1<k,m<n 1<j<n

Define the radii polynomial by
p(r) £ Zyr? —r + Y. (15)

If there exists ro € (0,7] with p(ro) < 0, then there exists a unique a € By (a) such that F(a) = 0.

Proof. Let r < r, and consider ¢ € B,(a). Applying the Mean Value Inequality and using (14),

IIA(DE(c) = DF(@))[llo < S sup I[AD?F(a)hl|scllw — alloc < Zor, (16)
oo (leBr( )

where ||| - |||coc denotes matrix norm. Define the Newton-like operator T: R™ — R™ by T'(a) =
a — AF(a). Since A is invertible, F'(a) = 0 if and only if T(a) = a. Let ro > 0 be such that
p(ro) < 0. Hence ZQT% + Yy < rg and Zorg + % < 1. Since Yy, Z2 > 0, one gets that

ZQTO < 1. (17)
For any a € By, (a), apply (16) to get
DT (a)llloe = |[[I = ADF(a)lllec = [[[A[DF(a) — DF(a)ll|loc < Zaro < 1.
Hence,

1T(a) = alloc < [[T(a) = T'(@)|oo + [|T(a) — alloo
< sup |[|[DT(0)[|lxlla = @lloc + [[AF (@)oo
c€Bry(a)

a
< (ZQT'()) ro + Yo < 7o-

Then T maps B,,(a) into itself. Finally, given aj,as € By, (a) combine (17) with the Mean Value
Inequality to get

1T (a1) = T(az)lloo < sup_[||DT(¢)[|ccllar = azlloc < (Z2ro)llar — azfloc < kllar — azloo,
c€Bry(a)

where k & Zorg < 1. Then, by the Contraction Mapping Theorem, T has a unique fixed point
a € By,(a). Tt follows from the invertibility of A that @ is the unique zero of F in By, (a). O




We now apply Theorem 2.2 to prove the existence of a zero of F' defined in (12). This begins
by computing an approximate solution. Applying Newton’s method, we find an approximate zero
of F' given by

1.418316134968973
_ 2.245235091886104 x 102
~ | 8.358590910573891 x 103 | (18)

—4.883983455701284 x 1072

Then, using INTLAB (see [11]) we compute rigorous enclosures of DF(a) and A % DF(a)~!
We then verify rigorously that Yy & 7.4 x 103 > ||AF(a@)||s0, which settles the computation of
the bound (13).

The next bound to compute is Zj satisfying (14). The only non zero second partial derivatives
are the terms 62?53% for j,k € {1,...,4}, where we note that by Clairaut’s theorem a(zjgék 8325(11
for k € {2,3,4},7 € {1,...,4}. Hence, we can write the bound (14) as

)

Z5(ry) > max sup ZA»J 5 (c)| +2 ZAJ
1<i<d | B A 0%a 1552 8@1&12

O F,
+ 2 Z A’]8a8a3c )| +2 Z A’]8a18a4 ) ' (19)

1<j<4 1<j<4

Choosing r, = 0.01 we use interval arithmetic to obtain that Z, < 41 satisfies (19).
Therefore, for r < r, the radii polynomial is given by

p(r) =41r? —r + 7.4 x 10715,

Using interval arithmetic, we show that for every rg € [7.5x107'%,0.01], p(r¢) < 0. By Theorem 2.2,
there exists a unique zero @ of F' in By 5,19-15(a). Denote a = (L ag, a3, a4). Then since |L —a;| <
la — alloo < 7.5 x 1071 and a; = 1.418316134968973, we conclude that L > 0. By construction,

B(t) & Mt (gs( )+M—1b) M =M 2 s | - MY (20)

defines a solution ¢ : [0, L] — R* of & = f, () with ¢(L) = —¢(0). The last hypothesis which needs
to be verified to apply Lemma 2.1 is the condition (10), that is ¢([0, L]) € Ry. Using a MATLAB
program using INTLAB, we consider a uniform time mesh (of size 300) of the time interval [0, L],
thatis 0=ty < t; < --- < t300 = L. For each mesh interval I}, = [tk—1,tk] (k=1,...,300), the code
computes an interval enclosure of ¢(I;) using formula (20). Then the code verifies that ¢1(t) > 0
for all t € I, and k = ki, ..., kg for some 1 < k; < ko < 300. This implies that ¢([ts, 1, tk,]) C Ry

Afterward, it verifies that qﬁ’( ) = ¢o(t) >0 forall t € Iy and k = 1,...,k; — 1. Hence ¢ (t) is
strictly increasing over the interval [0, t, 1], and since ¢1(0) = 0, it follows that gBl( t) > 0 for all
t € (0,tg,_1], that is ([0, tx,_1]) € R. Similarly, the code verifies that ¢ (t) = ¢o(t ) < 0 for all
t eI, and k= ko+1,...,300. Hence ¢ (t) is strictly decreasing over the interval [th,L] and since
$1(L) = 0, it follows that ¢1(t) > 0 for all ¢ € [ty,, L), that is ¢([tr,, L]) € R4. We conclude that

¢([07 L]) = &([0’ tk1—1]) U g)([tkl—latkm]) U ¢([tk27 ]) CR+.



Hence ¢ : [0, L] — R* verifies the hypotheses of Lemma 2.1. We conclude that ¢(0), (L) € ¥ and

that ~ R
= de i), te|0,L
F(t) def ¢(~) _ [~ ]~ (21)
—o(t—L), te|L,2L]
is a 2L-periodic solution of (6). All the computational steps described in this section are carried
out in the MATLAB program Proof .m available at [16].

3 Asymptotic stability

In this section, we demonstrate that the 2L-periodic orbit T'(t) defined in (21) is asymptotically
stable using the theory of discontinuous dynamical systems (e.g. see [17]). We do this by computing
the monodromy matrix X (2L) of I and show that all its nontrivial Floquet multipliers have modulus
less than one.

Define h : R* — R by h(x) & 21 so that the switching manifold is given by

¥ = {z e R': h(z) = 0}.

Denote by a(V) o gg(ﬂ) = (0, —ag, —a3, —a4)’ the point at which I crosses ¥ coming from R+ and

entering in R_. Similarly, denote by a(?) o (0~, ag,as,a4)’ the point at which I' crosses ¥ coming

from R_ and entermg in R. For that reason, I is called a crossing periodic orbit (e.g. see [18, 19]).
def

Denote by T' < 2L the period of T, £ & L, and denote by ®(¢, z¢) the solution of (6) at time ¢ with
initial condition zg. Then (i.e. see [20]) the monodromy matrix is given by

X(T) = X(T,0)5_4.(a?)X (£, 0)S— (@) (22)

where

Sy (@) €1+ (MWT>( )

S (@) e+ <(§}—LT J;_)VhT> (@2

are called the saltation matrices, and where the fundamental matrix solutions X (¢,0) and X (¢,1)
satisfy

PSR
—~
v@k

=)
~—

I

Df_(®(t,aM)) X (t,0) = MX(t 0), fortel0,L], with X(0,0)=1
Df (®(t,aMNX(t,L) = MX(t,L), forte[L,2L], with X(L,L)=1.

PSR
e
=

I

This implies that X(¢,0) = eMt and therefore X(t,0) = X(L,0) = ML, Similarly, X(t,1) =
eM(=L) and then X(T,t) = X(2L,L) = eML.

Since Vh = (1,0,0,0)” we obtain that VAT - f, (a1)) = —ay and VAT - f_(a®) = ay. Simple
computations yield
1
0 -
0 = S_,(a@).

o O = O
o= O O
— o O O



Hence, the monodromy matrix is given by

1 00 0 1 00
- 10 100 -l 0o 10
_ ML ML
X(2L)=e 0 01 0]fF¢ 0 01
—%001 —%00

Using interval arithmetics and that |L — a1, |ag — dg| < 7.5 x 10719

(23)

_ o O O

, we compute rigorously an

interval enclosure of (23) and using the rigorous computational method from [21] we prove that

the spectrum o (X (2L)) of X (2L) satisfies

where

def

By [0.99999989798820, 1.00000010201179]
B & [0.05862265751705, 0.05862286154064]
Bz = | ]

[ ]

£[0.00000059034712, 0.00000079437071

def

B4 = 0.00001170839977,0.00001191242336|.

This rigorous computation is carried out in the MATLAB program Proof .m available at [16]. From
this, we conclude that three Floquet multipliers of I' have modulus strictly less than one. This
concludes the proof that the 2L-periodic orbit I'(¢) defined in (21) is asymptotically stable, and

hence the proof of Theorem 1.1.
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