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Abstract

We consider the problem of rigorously computing continuous branches of bifurcation
points of equilibria in the one-dimensional diblock copolymer model. We apply the
method both to fold points and to pitchfork bifurcations which are forced through
symmetries in the equation.

1 Introduction

Understanding the equilibrium structure of nonlinear partial differential equations lies at the
heart of many important applied problems. Unfortunately, there are no general techniques
which allow one to obtain a complete answer for any such problem. In some cases, maximum
principle methods can be used to obtain partial results, in other cases one can reduce the
problem to studying specific connecting orbits in associated ordinary differential equations.
The most general of these methods are restricted to the case of partial differential equations
on one-dimensional domains, but even in this case many answers remain elusive.

One alternative that has been developed over the last decades is the use of computer-
assisted proofs in the study of equilibrium problems of nonlinear partial differential equa-
tions. Part of the allure of these methods is their frequent insensitivity to the order of
the considered partial differential equation. For example, despite the fact that classical
maximum principle methods cannot generally be used for fourth-order partial differential
equations, rigorous computational methods have been successfully applied to the stationary
Cahn-Hilliard equation [11, 17, 18], the diblock copolymer model [27, 28, 29], as well as to
others.

Almost all equilibrium problems that arise in applications involve a number of parame-
ters, and one is generally interested in understanding how the structure of the equilibrium
set changes as these parameters are varied. In this context, precise mathematical methods
from bifurcation theory exist which can predict where changes in the solution set occur,
i.e., they address the location of bifurcation points. In addition, they can provide complete
local descriptions of emerging solution branches. Yet, these methods usually fail to pro-
vide information on the global structure of such branches. Also in this context, rigorous
computational techniques have successfully been used, see for example [9, 12, 23].
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Figure 1: Equilibrium bifurcation diagrams of the Cahn-Hilliard model (left image) and the
diblock copolymer model for σ = 6 (right image). In both figures, µ = 0. Most of the
shown branches actually correspond to two or more solution branches, since the L2-norm
of the associated solutions is used as the vertical diagram axis. The colors correspond to
the indices of the solutions. Along the horizontal trivial solution branch they increase from
zero (black) to five (cyan).

In the current paper, we show that rigorous computational methods can locate curves
in parameter space along which certain types of bifurcation points occur. Our interest in
this problem stems from recent work on the diblock copolymer equation, which for the
one-dimensional domain Ω = (0, 1) is given by

ut = − (uxx + λf(u))xx − λσ(u− µ) , (1)

subject to the mass constraint µ =

∫ 1

0

u(x)dx ,

as well as ux(x) = uxxx(x) = 0 for x = 0, 1 .

where in the following we use the nonlinearity f(u) = u − u3. This partial differential
equation is a model for microphase separation in diblock copolymers as described in [20]. In
its original form it was proposed by Ohta and Kawasaki [21] and Bahiana and Oono [1], for
more information regarding its derivation and the involved parameters we refer the reader
to Choksi and Ren [6, 7].

In [15] we combined rigorous bifurcation-theoretic results with numerical simulations to
shed light on the long-term dynamics of the diblock copolymer model in one dimension. It
is well-known that the model exhibits multi-stability, i.e., the coexistence of multiple stable
equilibrium solutions. Furthermore, the constant function u ≡ µ is always an equilibrium
solution for the diblock copolymer model, representing a homogeneous polymer blend. For
sufficiently large values of the parameter λ this stationary state loses its stability, and one
is generally interested in the long-term behavior of solutions of (1) which originate close
to µ. It was shown in [15] that the spatial periodicity of the long-term limit of typical
solutions changes along well-defined curves in the λ-σ-parameter plane. In fact, numerical
path-following computations suggested that these curves are the locations of very specific
secondary bifurcation points in the diblock copolymer bifurcation diagram.

The following is a somewhat related problem. One can easily see that the diblock
copolymer model is a regular perturbation, with respect to the parameter σ, of the stan-
dard Cahn-Hilliard model, which corresponds to σ = 0. The equilibrium structure of the
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Cahn-Hilliard equation has been completely described by Grinfeld & Novick-Cohen [13] by
combining phase-plane analysis with transversality arguments, and this leads to a bifurca-
tion diagram as in the left image of Figure 1. The method of [13] relies on the fact that the
stationary Cahn-Hilliard problem in one dimension can be integrated twice, reducing it to a
second-order nonlinear boundary value problem. However, this is no longer the case in the
diblock copolymer model — which is certainly responsible for the fact that our knowledge of
its equilibrium structure is extremely limited. Nevertheless, as a regular perturbation prob-
lem the bifurcation diagram of the Cahn-Hilliard model changes in a continuous manner as σ
is increased from zero. Part of this change was discussed in [15]. Namely, it was shown that
as σ increases from zero, there is an infinite sequence of branch interactions near the trivial
solution line as the branches successively move to the right. These local interactions have
been rigorously described in [15] using analytical bifurcation-theoretic techniques. Further,
the local bifurcations are observed to combine with global bifurcations from infinity, leading
to different types of branch interactions at secondary bifurcations. Five of these secondary
bifurcation points can be seen in the right image of Figure 1, which shows part of the diblock
copolymer bifurcation diagram for σ = 6. While one of these points is a regular saddle-node
type bifurcation point, the remaining four are of pitchfork type. Understanding the loca-
tions of these secondary bifurcation points in the λ-σ-parameter plane lies at the heart of
understanding how the complicated diblock copolymer bifurcation diagram is obtained from
the simple Cahn-Hilliard diagram. For more details, we refer the reader to the survey [28].

Motivated by the above discussion, in this paper we develop a rigorous computational
method to compute the location curves of secondary bifurcation points as above. For the
case of the saddle-node type bifurcation point this is accomplished by considering a standard
extended system which encodes both the existence condition for the equilibrium point and
the existence of a one-dimensional non-degenerate kernel of the linearization of the diblock
copolymer model at this equilibrium. This extended system will lead to a well-defined
continuation problem. However, for the remaining four secondary bifurcation points in the
right image of Figure 1 this extended system has a degeneracy. This is due to the fact that
these bifurcation points are pitchfork bifurcations which are forced by symmetries in the
model. In these cases we employ a method due to Werner & Spence [30] to derive a well-
defined continuation problem. While in this paper we concentrate on the case of the diblock
copolymer model, similar questions arise in the study of nucleation in the Cahn-Hilliard
model, as described in [2, 3, 4, 10]. We expect that the methods outlined in the following
can easily be applied to this situation as well.

The remainder of the paper is organized as follows. In Section 2 we present the functional-
analytic setting for our studies, showing how the results of [30] can be adapted to our
situation. In Section 2.1 we view the set of equilibria of a differential equation as the
zero set of a nonlinear mapping in an abstract function space. We use the Lyapunov-
Schmidt reduction technique to study the zero set of such a mapping. This section includes
the introduction of equivariant symmetry, with the goal of being able to treat symmetry-
breaking bifurcations. In Section 2.2, we then apply the Lyapunov-Schmidt method to
saddle-node bifurcations. We introduce an extended system consisting of the nonlinear
mapping whose zero set consists of equilibria, along with two other bifurcation conditions.
We then apply our abstract approach to the extended system to prove the existence of saddle-
node bifurcation points. Finally, in 2.3, we treat the case of pitchfork bifurcations. This
time we make assumptions of equivariance of the nonlinear mapping, and the existence of a
solution which is either symmetric or antisymmetric. This allows us to prove the existence
of symmetry-breaking pitchfork bifurcation points. In Section 2.4, we demonstrate that the
diblock copolymer equation satisfies all the assumptions necessary for our abstract setting.
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Section 3 gives specific details of how to transfer the abstract functional-analytic existence
results into a rigorous computational method. In particular, we give existence results for
equilibrium solutions at regular and bifurcation points, where our solutions are proved to
be contained in a precisely defined small neighborhood of a function given in the form of
a truncated Fourier series expansion. Section 3.1 gives the function-analytic background
for rigorous bounds on manipulated functions given in terms of Fourier series expansions.
Section 3.2 details the method of sequentially validating the curve of equilibrium solutions
of the equation as a parameter is varied using the radii polynomial approach. Section 3.3
and Section 3.4 provide the detailed estimates and the bounds required to define the radii
polynomial associated to the saddle-node bifurcations and respectively to the pitchfork
bifurcations. Finally, in Section 3.5, the radii polynomial approach is combined with the
Lyapunov-Schmidt results in Section 2 in order to establish branches of saddle-node and
pitchfork bifurcations for the diblock copolymer equation.

2 Extended Systems for Locating Bifurcation Points

In this section we present the functional-analytic framework which will be used to study the
continuation of bifurcation points using rigorous computational techniques. As we anticipate
that our methods are applicable to a wide variety of settings, we formulate the results first in
a general Banach space setting, and apply them only later to the diblock copolymer model.

2.1 Lyapunov-Schmidt Reduction and Equivariance

We begin by recalling the basic functional-analytic tool which can be used to study the
equilibrium set of nonlinear equations in Banach spaces — the Lyapunov-Schmidt reduction.
The results of this section are all well-known and stated only to keep the presentation as
self-contained as possible. For more details we refer the reader to [8, 31]. We study nonlinear
operator equations of the form

F (λ, u) = 0 , (2)

where F : R×X → Y is a smooth nonlinear mapping, and X and Y are real Banach spaces.
Throughout this section, we assume the following.

Assumption 2.1 (Fredholm Property). Let X and Y denote real Banach spaces, and
assume that the parameter-dependent nonlinear operator F : R × X → Y is sufficiently
smooth. Suppose that the point (λ0, u0) is a solution of (2), i.e., that we have the identity
F (λ0, u0) = 0. Finally, assume that the Fréchet derivative L = DuF (λ0, u0) ∈ L(X,Y ) is a
Fredholm operator of index zero.

In addition, we will only consider possible bifurcation points with a one-dimensional
nullspace. This leads to the following second assumption.

Assumption 2.2 (One-Dimensional Kernel). Suppose that Assumption 2.1 holds. Assume
further that the linearization L = DuF (λ0, u0) has a one-dimensional kernel. Since it has
index zero, its range has co-dimension one. In this case, we have

N(L) = span[ϕ0] and R(L) = N (ψ∗0)

for some nonzero elements ϕ0 ∈ X and ψ∗0 ∈ Y ∗, where Y ∗ denotes the dual space of Y .
Finally, let X̃ ⊂ X and Ỹ ⊂ Y denote closed subspaces such that

X = N(L)⊕ X̃ and Y = Ỹ ⊕R(L) .
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The continuous linear projector P : Y → Y is defined via R(P ) = Ỹ and N(P ) = R(L),
while the projector Q : X → X is defined via R(Q) = N(L) and N(Q) = X̃. Notice that
both P and Q have rank one.

In the above situation, one can study the solution set of (2) in a neighborhood of (λ0, u0)
by solving an associated real-valued equation which involves only two real arguments, the
so-called bifurcation equation. It is the subject of the following proposition which describes
the Lyapunov-Schmidt reduction.

Proposition 2.3 (Lyapunov-Schmidt Reduction). In the situation of Assumptions 2.1
and 2.2 there exist a neighborhood Λ0 of λ0, a neighborhood V0 of v0 = Qu0 ∈ N(L), a
smooth function W : Λ0 × V0 → X̃, as well as a smooth real-valued function b which is
defined in a neighborhood of the point (λ0, 0) ∈ R2 such that the following hold:

(a) If (λ, α) is sufficiently close to the point (λ0, 0) ∈ R2 and satisfies b(λ, α) = 0, then
we have

F (λ, u) = 0 for u = v0 + αϕ0 +W (λ, v0 + αϕ0) .

(b) Conversely, if (λ, u) is close enough to (λ0, u0) and solves F (λ, u) = 0, then for α
defined via v0 + αϕ0 = Qu we have b(λ, α) = 0 and u = Qu+W (λ,Qu).

In other words, the solution set of b(λ, α) = 0 in a neighborhood of the point (λ0, 0) ∈ R2 is
in one-to-one correspondence to the solution set of F (λ, u) = 0 in a neighborhood of (λ0, u0).

Proof. According to Assumption 2.2, solving the nonlinear problem (2) is equivalent to
solving the two equations

PF (λ, v + w) = 0 , as well as (3)

(I − P )F (λ, v + w) = 0 . (4)

where v = Qu and w = (I−Q)u. If we use the abbreviation G(λ, v, w) = (I−P )F (λ, v+w),
then our assumptions readily imply that G : R×N(L)× X̃ → R(L). If we further introduce
the abbreviations v0 = Qu0 and w0 = (I −Q)u0, then G(λ0, v0, w0) = 0, and

DwG(λ0, v0, w0) = (I − P )L|X̃ = L|X̃ ∈ L
(
X̃, R(L)

)
.

According to our definition of X̃ the continuous linear operator DwG(λ0, v0, w0) is therefore
one-to-one and onto, hence continuous with continuous inverse — and one can apply the
implicit function value theorem to solve (4) locally for w as a function of λ and v. This
furnishes the function W as in the formulation of the theorem. Plugging W into (3) shows
that locally near (λ0, u0) a pair (λ, u) solves F (λ, u) = 0 if and only if (λ, v) = (λ,Qu)
satisfies

PF (λ, v +W (λ, v)) = 0 .

If we now set b(λ, α) = ψ∗0(PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))), then the result follows due
to our choices of ψ∗0 and P .

Important for applications is the fact that one can easily derive a Taylor expansion for
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Dλb(λ0, 0) = ψ∗0DλF (λ0, u0) ,

Dλαb(λ0, 0) = ψ∗0DλuF (λ0, u0)[ϕ0]

+ ψ∗0DuuF (λ0, u0)[ϕ0, DλW (λ0, v0)] ,

Dααb(λ0, 0) = ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] ,

Dαααb(λ0, 0) = ψ∗0DuuuF (λ0, u0)[ϕ0, ϕ0, ϕ0]

+ 3ψ∗0DuuF (λ0, u0)[ϕ0, DvvW (λ0, v0)[ϕ0, ϕ0]] ,

LDλW (λ0, v0) = −(I − P )DλF (λ0, u0) ,

LDvvW (λ0, v0)[ϕ0, ϕ0] = −(I − P )DuuF (λ0, u0)[ϕ0, ϕ0] .

Table 1: Some of the partial derivatives of the bifurcation function b(λ, ν) at the point (λ0, 0)
up to order three, together with the required partial derivatives of W .

the bifurcation function b(λ, α) near the point (λ0, 0). One can show that

b(λ0 + ν, α) = ν ·Dλb(λ0, 0) +
ν2

2
·Dλλb(λ0, 0) + αν ·Dλαb(λ0, 0) +

α2

2
·Dααb(λ0, 0)

+
ν3

6
·Dλλλb(λ0, 0) +

αν2

2
·Dλλαb(λ0, 0) +

α2ν

2
·Dλααb(λ0, 0)

+
α3

6
·Dαααb(λ0, 0) +R(ν, α) (5)

with R(ν, α) = O(‖(ν, α)‖4), where the derivatives of b can be computed explicitly as in
Table 1, which also contains the necessary derivatives of W . Notice that the latter deriva-
tives are all obtained through solving an inhomogeneous linear equation which involves the
restriction of L onto X̃, which in this case is an invertible mapping.

The method of Lyapunov-Schmidt is one ingredient for our rigorous computational study
of bifurcation points in the diblock copolymer equation. In order to treat pitchfork bifur-
cation points, we also make use of symmetry methods. For the purposes of this paper, we
assume that symmetry occurs in the following specific form.

Definition 2.4 (Z2-Equivariance). In the situation of Assumption 2.1, suppose there exist
bounded linear operators SX ∈ L(X) and SY ∈ L(Y ) such that

SX 6= I , SY 6= I , S2
X = I , S2

Y = I ,

as well as
F (λ, SXu) = SY F (λ, u) for all λ ∈ R and u ∈ X . (6)

Then we say that F is Z2-equivariant. Based in the symmetry operators SX and SY one
can also decompose the underlying Banach spaces into the symmetric elements and the
antisymmetric elements. More precisely, for the Banach space X we define

Xs = {u ∈ X : SXu = u} and Xa = {u ∈ X : SXu = −u} ,
and analogously one can define the subspaces Ys and Ya of Y . Then it is straightforward to
show that

X = Xs ⊕Xa as well as Y = Ys ⊕ Ya .
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In our applications below, the operators SX and SY are usually given by the same formula,
even though they act on different Banach spaces. We therefore simply drop the subscripts in
the following to simplify notation. It will always be clear from context whether S acts on X
or on Y .

For the nonlinear equation (2), equivariance has immediate consequences regarding in-
variance of subspaces, both for the equation and for certain derivatives of F . For example,
by differentiating the identity (6) with respect to u one immediately obtains

DuF (λ, SXu) [SXv] = SYDuF (λ, u) [v] (7)

for all λ ∈ R and u, v ∈ X. If one assumes in addition x ∈ Xs, then (7) furnishes the Z2-
equivariance of the Fréchet derivative DuF (λ, u). The following lemma collects a number
of similar properties, which will be useful later on. The results are stated without their
straightforward proofs, see also [30].

Lemma 2.5 (Equivariance of Partial Derivatives). Suppose that Assumption 2.1 holds, and
that (2) is Z2-equivariant as in Definition 2.4. Then the following statements hold for all
parameters λ ∈ R, as long as we have u ∈ Xs:

(a) We have both F (λ, u) ∈ Ys and DλF (λ, u) ∈ Ys.

(b) Both the inclusions DuF (λ, u)[Xs] ⊂ Ys and DuF (λ, u)[Xa] ⊂ Ya are satisfied, as well
as DλuF (λ, u)[Xs] ⊂ Ys and DλuF (λ, u)[Xa] ⊂ Ya.

(c) The inclusions DuuF (λ, u)[Xs, Xs] ⊂ Ys and DuuF (λ, u)[Xa, Xa] ⊂ Ys hold, as well
as DuuF (λ, u)[Xs, Xa] ⊂ Ya.

The above lemma applies to the derivatives of F at any point (λ, u), as long as u ∈ Xs.
If we consider in particular the point (λ0, u0) from Assumption 2.2, even more can be said.
The following result shows that both the eigenfunction ϕ0 and the element ψ∗0 are symmetric
or antisymmetric. In addition, the complements X̃ and Ỹ in Assumption 2.2 can be chosen
such that they respect the symmetry operations as well.

Lemma 2.6 (Equivariance Effects of a One-Dimensional Kernel). Suppose that Assump-
tion 2.2 holds, that (2) is Z2-equivariant as in Definition 2.4, and that u0 ∈ Xs. Then the
following hold:

(a) The eigenfunction ϕ0 which spans the nullspace N(L) of L = DuF (λ0, u0) is either
an element of Xs or of Xa, i.e., we have SXϕ0 = εXϕ0 for some εX ∈ {±1}.

(b) The element ψ∗0 which characterizes R(L) is either symmetric or antisymmetric with
respect to the equivariance S∗Y , i.e., we have S∗Y ψ

∗
0 = εY ψ

∗
0 for some εY ∈ {±1}.

(c) If in (b) we have εY = +1, then the image L[Xs] has codimension one in the symmetric
space Ys, and L[Xa] = Ya. In contrast, if εY = −1, then L[Xs] = Ys, and the
image L[Xa] has codimension one in the antisymmetric space Ya.

(d) The projectors P and Q in Assumption 2.2 can be chosen in such a way that they
commute with the symmetry actions, i.e., such that SY P = PSY and SXQ = QSX .

Proof. According to Lemma 2.5(b) we have both LXs ⊂ Ys and LXa ⊂ Ya, i.e., the splitting
into symmetric and antisymmetric elements is respected by L. One can then easily see that

ϕ0 = ϕ0,s + ϕ0,a ∈ Xs ⊕Xa if ϕ0,s =
ϕ0 + SXϕ0

2
and ϕ0,a =

ϕ0 − SXϕ0

2
.
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This splitting furnishes 0 = Lϕ0 = Lϕ0,s + Lϕ0,a, and therefore Lϕ0,s = −Lϕ0,a, which
in turn implies that both Lϕ0,s and Lϕ0,a are contained in Xs ∩Xa = {0}. Together, this
shows that both ϕ0,s and ϕ0,a are in N(L), hence multiples of ϕ0. Together this implies
that either we have ϕ0 ∈ Xs or ϕ0 ∈ Xa, which is equivalent to SXϕ0 = ϕ0 or SXϕ0 = −ϕ0,
respectively. This completes the proof of (a).

In order to establish (b), note that since L is a Fredholm operator of index zero with
one-dimensional nullspace, the same is true for its adjoint operator L∗, and the closed
range theorem then implies that N(L∗) = span[ψ∗0 ]. The equivariance identity SY L = LSX
immediately gives S∗XL

∗ = L∗S∗Y . As above, one obtains L∗Y ∗s ⊂ X∗s and L∗Y ∗a ⊂ X∗a , if the
symmetric and antisymmetric elements in the dual spaces are defined via the adjoints S∗Y
and S∗X . The remainder of the proof of (b) proceeds completely analogous to the proof of (a)
above.

We now turn our attention to (c). If we assume that both L[Xs] = Ys and L[Xa] = Ya
are satisfied, then one can easily see that L[X] = L[Xs⊕Xa] = Ys⊕Ya = Y . This, however,
contradicts the fact that the range R(L) has codimension one in Y . In other words, we
necessarily have Ys \ L[Xs] 6= ∅ or Ya \ L[Xa] 6= ∅, or both.

Now let ψ0 denote an arbitrary element in (Ys \L[Xs])∪ (Ya \L[Xa]) 6= ∅. Since ψ0 6= 0
and ψ0 6∈ R(L) we can assume without loss of generality that this element is scaled in such
a way that ψ∗0(ψ0) = 1. In addition, due to ψ0 ∈ Ys ∪ Ya there exists a sign κ ∈ {±1} such
that SY ψ0 = κψ0. Then one obtains

κ = ψ∗0(κψ0) = ψ∗0(SY ψ0) = (S∗Y ψ
∗
0)(ψ0) = εY ψ

∗
0(ψ0) = εY ,

i.e., we have SY ψ0 = εY ψ0.
Now assume εY = 1. Then the above arguments readily show that Ya \ L[Xa] = ∅, and

this in turn implies Ys \ L[Xs] 6= ∅. Therefore, the subspace L[Xs] has codimension one
in Ys, and L[Xa] = Ya. The case εY = −1 can be treated analogously and leads to the
opposite configuration.

It remains to establish (d), and we begin with the statement concerning the projection P .
As in the proof of (c), let ψ0 denote an arbitrary element in (Ys \L[Xs])∪ (Ya \L[Xa]) 6= ∅,
and we can again assume without loss of generality that ψ∗0(ψ0) = 1. In addition, one
automatically obtains SY ψ0 = εY ψ0. Now define Ỹ = span[ψ0], and let P be the associated
projector as in Assumption 2.2. Then Py = ψ∗0(y)ψ0, and this implies for all y ∈ Y the
identity

SY Py = ψ∗0(y)SY ψ0 = εY ψ
∗
0(y)ψ0 = (S∗Y ψ

∗
0) (y)ψ0 = ψ∗0 (SY y)ψ0 = PSY y ,

i.e., the operators P and SY commute.
In order to prove the remaining statement for Q, choose any ϕ∗ ∈ X∗ with ϕ∗(ϕ0) 6= 0.

One can then write ϕ∗ in the form ϕ∗ = ϕ∗s +ϕ∗a, where S∗Xϕ
∗
s = ϕ∗s and S∗Xϕ

∗
a = −ϕ∗a. Due

to the inequality ϕ∗(ϕ0) 6= 0, we can therefore find an element ϕ∗0 ∈ X∗ with ϕ∗0(ϕ0) = 1
and S∗Xϕ

∗
0 = κϕ∗0 for some κ ∈ {±1}, as well as

κ = κϕ∗0(ϕ0) = S∗Xϕ
∗
0(ϕ0) = ϕ∗0(SXϕ0) = ϕ∗0(εXϕ0) = εX ,

i.e., we have S∗Xϕ
∗
0 = εXϕ

∗
0. If we now define Qx = ϕ∗0(x)ϕ0 and X̃ = N (ϕ∗0), then one

finally obtains

SXQx = ϕ∗0(x)SXϕ0 = εXϕ
∗
0(x)ϕ0 = S∗Xϕ

∗
0(x)ϕ0 = ϕ∗0(SXx)ϕ0 = QSXx ,

and the proof of the lemma is complete.
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Using these results, we can now show that equivariance also leads to the following sym-
metry properties in the method of Lyapunov-Schmidt.

Proposition 2.7 (Equivariant Lyapunov-Schmidt Reduction). Suppose that all the as-
sumptions of Proposition 2.3 are satisfied, and that F is Z2-equivariant as in Definition 2.4.
Finally, assume that u0 ∈ Xs, and suppose that the projections P and Q are chosen as in
Lemma 2.6(d). Then the following hold:

(a) The nullspace N(L) of L = DuF (λ0, u0) is invariant under SX , and the range R(L)
is invariant under SY .

(b) The mapping W appearing in the the Lyapunov-Schmidt reduction in Proposition 2.3
is Z2-equivariant, i.e., we have

W (λ, SXv) = SXW (λ, v) for all λ ∈ R and v ∈ N(L) .

(c) The bifurcation function b(λ, α) satisfies

b(λ, εXα) = εY b(λ, α) for all (λ, α) close to (λ0, 0) ,

where εX and εY encode the symmetry properties of ϕ0 and ψ∗0 , respectively, as shown
in Lemma 2.6.

Proof. The invariance of N(L) and R(L) follows immediately from (7) and SXu0 = u0. To
show (b), for arbitrary λ ∈ R and v ∈ N(L) the equivariance of F , combined with the
construction of W in the proof of Proposition 2.3 and Lemma 2.6(d) show

(I − P )F (λ, SXv + SXW (λ, v)) = (I − P )SY F (λ, v +W (λ, v))

= SY (I − P )F (λ, v +W (λ, v))︸ ︷︷ ︸
=G(λ,v,W (λ,v))

= 0 ,

which implies that w = SXW (λ, v) solves G(λ, SXv, w) = (I − P )F (λ, SXv + w) = 0. Due
to the uniqueness property of W guaranteed by the implicit function theorem, this furnishes

SXW (λ, v) = W (λ, SXv) ,

i.e., the mapping W is Z2-equivariant. Finally, to show (c), for all (λ, 0) ∈ R2 close to (λ0, 0)
we have

εY b(λ, α) = εY ψ
∗
0PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= S∗Y ψ
∗
0PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= ψ∗0SY PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= ψ∗0PF (λ, v0 + αSXϕ0 +W (λ, v0 + αSXϕ0))

= ψ∗0PF (λ, v0 + αεXϕ0 +W (λ, v0 + αεXϕ0))

= b(λ, εXα) ,

where we have used the fact that SXv0 = SXQu0 = QSXu0 = Qu0 = v0. This completes
the proof of the lemma.

While in general it does not seem to be the case that εX and εY have to be related,
there are special situations when they have to coincide. One such situation is outlined in
the following lemma, and it will be important for the application to the dibock copolymer
model.
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Lemma 2.8 (Forcing Sign Equality). Suppose that all the assumptions of Proposition 2.3
are satisfied, and that F is Z2-equivariant as in Definition 2.4. Assume that u0 ∈ Xs,
suppose that the projections P and Q are chosen as in Lemma 2.6(d), and let ϕ0 and ψ∗0
define the nullspace and range of the linearization L = DuF (λ0, u0) as before. Furthermore,
suppose that there is a linear mapping J : X → Y which satisfies JSX = SY J , as well as

Jϕ0 6∈ R(L) , or equivalently ψ∗0Jϕ0 6= 0 .

Then the signs εX and εY defined via SXϕ0 = εXϕ0 and S∗Y ψ
∗
0 = εY ψ

∗
0 satisfy εX = εY ,

i.e., they necessarily coincide.

Proof. The assumptions immediately imply

εX · ψ∗0Jϕ0 = ψ∗0J (εXϕ0) = ψ∗0JSXϕ0 = ψ∗0SY Jϕ0 = S∗Y ψ
∗
0Jϕ0 = εY · ψ∗0Jϕ0 ,

and dividing both sides by ψ∗0Jϕ0 6= 0 furnishes the result.

Notice that if Lemma 2.8 holds, then part (c) of Proposition 2.7 is particularly useful. In
the nontrivial case, one has εX = εY = −1, which immediately implies that the bifurcation
equation b(λ, α) = 0 is odd with respect to α — and therefore forces the existence of a
trivial solution. This situation will correspond to symmetry-breaking bifurcations discussed
further below.

2.2 Saddle-Node Bifurcation Points

We now turn our attention to the first type of bifurcation considered in this paper — the
saddle-node bifurcation. In generic systems, this is the only type of bifurcation point that
can be observed. For this, assume that we have a solution (λ0, u0) of the problem (2), and
that Assumption 2.2 holds. Then the condition

ψ∗0DλF (λ0, u0) 6= 0 (8)

is generically satisfied, and in this case one often refers to (λ0, u0) as a simple saddle-node
bifurcation point , see for example [30]. In fact, the left-hand side of (8) is the first term
in the Taylor expansion (5) of the bifurcation equation. In combination with the implicit
function theorem this shows that under condition (8), the bifurcation equation b(λ, α) = 0
can be solved for λ in a neighborhood of (λ0, 0). While this could lead to a situation where
no bifurcation actually occurs, for example if the solution curve is monotone with respect
to α, by assuming an additional generic condition one can guarantee a true saddle-node
bifurcation point.

Proposition 2.9 (Existence of Saddle-Node Bifurcations). Suppose that Assumption 2.2 is
satisfied and that (8) holds. If in addition the generic condition

ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0 (9)

is true, then the nonlinear problem (2) undergoes a saddle-node bifurcation at (λ0, u0).
Furthermore, if ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0]/ψ∗0DλF (λ0, u0) > 0, then the bifurcating solutions
exist for λ < λ0 close to the bifurcation point, and if the ratio is negative for λ > λ0.

Proof. Proposition 2.3 shows that characterizing the solution set of (2) in a neighborhood
of (λ0, u0) is equivalent to solving the bifurcation equation

b(λ0 + ν, α) = 0 (10)
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in a neighborhood of (0, 0) ∈ R2, where the Taylor expansion for b is given in (5). Due to (8)
and the implicit function theorem there exists a smooth function ν = h(α) which is defined
in a neighborhood of 0 and whose graph contains all solutions of (10) in that neighborhood.
In particular, we have h(0) = 0. Differentiating the identity b(λ0 + h(α), α) = 0 twice with
respect to α and then setting α = 0 furnishes

Dλb(λ0, 0)h′(0) +Dαb(λ0, 0) = 0 ,

Dλb(λ0, 0)h′′(0) +Dλλb(λ0, 0)h′(0)2 + 2Dλαb(λ0, 0)h′(0) +Dααb(λ0, 0) = 0 .

According to Dαb(λ0, 0) = 0 and Dλb(λ0, 0) = ψ∗0DλF (λ0, u0) 6= 0 the first equation im-
plies h′(0) = 0. Together with the second equation we finally obtain

h′′(0) = −Dααb(λ0, 0)

Dλb(λ0, 0)
= −ψ

∗
0DuuF (λ0, u0)[ϕ0, ϕ0]

ψ∗0DλF (λ0, u0)
,

which completes the proof of the lemma.

While the above result provides generic conditions that guarantee a saddle-node bifur-
cation, we need to reformulate these to make them amenable to a rigorous computational
approach which involves Newton’s method. In other words, we need to derive a nonlinear
system with an isolated zero which corresponds to the bifurcation point. For this, we follow
the approach in [19] and consider a suitable extended system. More precisely, we supple-
ment the nonlinear parameter-dependent equation (2) by another equation which forces
the existence of an eigenfunction v of the appropriate Fréchet derivative, together with a
normalizing condition on this eigenfunction. This leads to an extended system of the form

F (λ, u) = 0 ,

DuF (λ, u)[v] = 0 , (11)

`(v)− 1 = 0 ,

where ` ∈ X∗ is a fixed element of the dual space of X. We abbreviate this system as

F(λ, u, v) = (0, 0, 0) , (12)

where

F :

{
R×X ×X → R× Y × Y

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])

Then the following result is analogous to [19, 24]. Since in this paper only operators acting
on one Banach space are considered, we present the straightforward extension to mapping
between different Banach spaces in detail.

Theorem 2.10 (Saddle-Node Bifurcations via Extended Systems). Suppose that Assump-
tion 2.1 is satisfied. Then the following two statements hold.

(a) If the nonlinear operator F satisfies Assumption 2.2, as well as both conditions (8)
and (9), and if ` ∈ X∗ is any functional such that `(ϕ0) = 1, then the Fréchet deriva-
tive D(λ,u,v)F(λ0, u0, ϕ0) is invertible, i.e., the solution (λ0, u0, ϕ0) of the extended
system (11) is an isolated non-degenerate zero of the mapping F .

(b) Conversely, if there exists an ` ∈ X∗ and a ϕ0 ∈ X such that F(λ0, u0, ϕ0) = (0, 0, 0),
and if the Fréchet derivative D(λ,u,v)F(λ0, u0, ϕ0) is invertible, then the nonlinear
operator F satisfies Assumption 2.2, as well as both conditions (8) and (9).

11



In other words, the nonlinear problem (2) undergoes a saddle-node bifurcation at (λ0, u0) in
the sense of Proposition 2.9, if and only if the triple (λ0, u0, ϕ0) is a non-degenerate zero of
the nonlinear map F which defines the extended system (11).

Proof. (a) One can easily see that the Fréchet derivative of F is given by

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ, ṽ] =
(
`(ṽ), λ̃ ·DλF (λ0, u0) + Lũ,

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ
)
,

where we again use the abbreviation L = DuF (λ0, u0).
To begin with, we show that the Fréchet derivative is one-to-one. Assume that

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, 0).

We will now show that this implies (λ̃, ũ, ṽ) = (0, 0, 0). Applying ψ∗0 to the second component
of the Fréchet derivative of F , together with R(L) = N(ψ∗0), yields

0 = λ̃ · ψ∗0DλF (λ0, u0) + ψ∗0Lũ = λ̃ · ψ∗0DλF (λ0, u0)︸ ︷︷ ︸
6=0

,

and this in turn furnishes λ̃ = 0. Substituting this identity into the second component one
obtains Lũ = 0, i.e., there exists a constant γ ∈ R such that ũ = γϕ0. Applying ψ∗0 to the
third component of the Fréchet derivative of F then implies

0 = ψ∗0DuuF (λ0, u0)[ϕ0, ũ] + ψ∗0Lṽ = γ · ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0]︸ ︷︷ ︸
6=0

,

implying γ = 0, as well as ũ = γϕ0 = 0. Now the third component reduces to Lṽ = 0, which
gives ṽ = ηϕ0. The first component then yields 0 = `(ṽ) = η · `(ϕ0) = η, i.e., we have ṽ = 0.
Thus the Fréchet derivative of F is one-to-one.

It only remains to show that the Fréchet derivative is onto. Let (τ, y, z) ∈ R × Y × Y
be arbitrary. If we define λ̃ = ψ∗0y/ψ

∗
0DλF (λ0, u0), then there exists a unique ũ ∈ X̃ which

satisfies Lũ = y − λ̃DλF (λ0, u0), and for every γ ∈ R we have

λ̃ ·DλF (λ0, u0) + L[ũ+ γϕ0] = y .

Now let γ = γ̃ denote the unique solution of the equation

ψ∗0
(
λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ γϕ0]

)
= ψ∗0z ,

which exists due to ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0. Then there exists a unique ṽ ∈ X̃ such
that for all η ∈ R we have

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ γ̃ϕ0] + L[ṽ + ηϕ0] = z .

If we finally define η̃ = τ − `(ṽ), then one can easily verify that

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ+ γ̃ϕ0, ṽ + η̃ϕ0] = (τ, y, z) ,

and this completes the proof of (a).
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(b) Now assume that there exists an ` ∈ X∗ and a ϕ0 ∈ X such that (λ0, u0, ϕ0) is a
non-degenerate zero of F . According to the form of the third component of F we know
that ϕ0 ∈ N(L). Assume there is another element ϕ1 ∈ N(L) which is linearly independent
of ϕ0. Then one can immediately verify that for all numbers α ∈ R the linear combination

ϕα = (1− α`(ϕ1))ϕ0 + αϕ1 satisfies `(ϕα) = 1

and is of course also in the kernel of L. This in turn implies that for all scalars α ∈ R we
have F(λ0, u0, (1−α`(ϕ1))ϕ0 +αϕ1) = (0, 0, 0), i.e., the zero (λ0, u0, ϕ0) is not isolated and
therefore the linearization of F at this point cannot be invertible. Thus, the operator F
satisfies Assumption 2.2.

Now assume that (9) is not satisfied, i.e., we have DuuF (λ0, u0)[ϕ0, ϕ0] ∈ R(L). If we
even have DuuF (λ0, u0)[ϕ0, ϕ0] = 0, then one can easily see that (λ̃, ũ, ṽ) = (0, ϕ0, 0) is
a nontrivial element in the kernel of the linearization D(λ,u,v)F(λ0, u0, ϕ0), which violates
its assumed invertibility. On the other hand, if DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0, then there ex-
ists a function v̂ 6∈ N(L) such that Lv̂ = −DuuF (λ0, u0)[ϕ0, ϕ0]. In this case, one can
verify that (λ̃, ũ, ṽ) = (0, 0, v̂− `(v̂)ϕ0) is a nontrivial element in the kernel of the lineariza-
tion D(λ,u,v)F(λ0, u0, ϕ0), which again violates the assumed invertibility of the Fréchet
derivative. This implies the validity of (9).

Finally, assume that (8) does not hold. This shows that DλF (λ0, u0) ∈ R(L), and there
exists a function û such that Lû = −DλF (λ0, u0). Thus, for all α ∈ R we have

DλF (λ0, u0) + L[û+ αϕ0] = 0 .

Due to the already established validity of (9) and

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ αϕ0] =

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û] + α ·DuuF (λ0, u0)[ϕ0, ϕ0] ,

we can find a value α̂ ∈ R such that

ψ∗0 (DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ α̂ϕ0]) = 0 ,

and therefore there exists a function v̂ ∈ X such that

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ α̂ϕ0] + Lv̂ = 0 .

This implies that the triple (λ̃, ũ, ṽ) = (1, û + α̂ϕ0, v̂ − `(v̂)ϕ0) is contained in the kernel
of the linearization D(λ,u,v)F(λ0, u0, ϕ0), violating the assumed non-degeneracy. Thus, (8)
holds and the proof of the lemma is complete.

The above lemma shows that generically, one can use standard path-following techniques
to follow simple saddle-node bifurcation points as zeros of the system (12), as long as this
system has an additional free parameter. This will be the case in our applications to the
diblock copolymer model. Notice also that we do not have to separately establish the non-
degeneracy conditions (8) and (9), as long as we can guarantee that the zero of the extended
system is non-degenerate.

2.3 Pitchfork Bifurcation Points Forced by Symmetry

We now turn our attention to the case of pitchfork bifurcation points. Of course, such
bifurcation points are non-generic in general systems. Nevertheless, our numerical path

13



following results presented in the introduction clearly indicate that they do in fact occur in
the diblock copolymer system. Unfortunately, however, at such pitchfork bifurcations the
linearization of the extended system F defined in (12) in the previous section is no longer
invertible — which prevents the use of Newton’s method to locate them via a computer-
assisted proof.

To remedy this problem we need to understand why these non-generic bifurcation points
frequently do occur in partial differential equations. As it turns out, pitchfork bifurcations
are usually forced through inherent symmetries. For the purposes of this paper, we assume
that the symmetry occurs in the specific form introduced in Definition 2.4, i.e., via Z2-
equivariance. It was shown in Proposition 2.7 that by choosing appropriate projections in
the method of Lyapunov-Schmidt, equivariance propagates to the function W , and in some
sense also to the bifurcation equation b(λ, α) = 0 through the signs εX and εY introduced
in Lemma 2.6. If both of these signs are negative, we are in the situation of a symmetry-
breaking bifurcation, and we have the following result.

Proposition 2.11 (Existence of Symmetry-Breaking Pitchfork Bifurcations). Suppose that
Assumption 2.2 is satisfied and that F is Z2-equivariant as in Definition 2.4. Furthermore,
assume that

SXu0 = u0 , SXϕ0 = −ϕ0 , as well as S∗Y ψ
∗
0 = −ψ∗0 , (13)

that the projections P and Q are chosen as in Lemma 2.6(d), and that

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0] 6= 0 , (14)

where ξ0 denotes the unique solution of the equation

DuF (λ0, u0)[ξ0] + (I − P )DλF (λ0, u0) = 0 with ξ0 ∈ Xs . (15)

Then the nonlinear problem (2) undergoes a pitchfork bifurcation at (λ0, u0). Locally at this
point the solution set of (2) consists of a smooth solution curve parameterized by λ, together
with a parabolic curve which is tangent to ϕ0 at (λ0, u0). Consider the ratio

% =
ψ∗0DuuuF (λ0, u0)[ϕ0, ϕ0, ϕ0] + 3ψ∗0DuuF (λ0, u0)[ϕ0, ζ0]

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]
,

where ξ0 was defined in (15) and ζ0 ∈ Xs is defined by

DuF (λ0, u0)[ζ0] + (I − P )DuuF (λ0, u0)[ϕ0, ϕ0] = 0 .

If the ratio % is positive, then the solutions on the parabolic branch exist for λ < λ0 close to
the bifurcation point, if % is negative then they exist for λ > λ0. If % = 0, either half of the
parabolic branch could lie on either side of λ0.

Proof. The assumptions of the proposition show that both Proposition 2.3 and Proposi-
tion 2.7 hold. In particular (13) implies that εX = εY = −1. Thus, the left-hand side of the
bifurcation equation b(λ, α) = 0 satisfies

b(λ,−α) = −b(λ, α) for all (λ, α) close to (λ0, 0) ,

which immediately implies that b(λ, 0) = 0 as well as Dααb(λ, 0) = 0 for all λ close to λ0.
Now define a function r in a neighborhood of (λ0, 0) by setting

r(λ, α) =


b(λ, α)

α
for α 6= 0 ,

Dαb(λ, 0) for α = 0 .
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Then in a neighborhood of (λ0, 0) the mapping r is smooth. Furthermore, it satisfies the
identity b(λ, α) = α · r(λ, α) — and this in turn shows that the bifurcation equation has
the trivial solution branch α = 0. From Proposition 2.3(a) this trivial branch gives rise to
the smooth solution curve λ 7→ v0 + W (λ, v0) which is parameterized by λ and uses the
projection v0 = Qu0. The mapping W is defined in Proposition 2.3, and Proposition 2.7(b)
implies that W is equivariant.

In order to find the second solution branch, we need to solve the equation r(λ, α) = 0.
For this, notice that the definition of r and (5), together with the fact that b(λ, 0) = 0 for
all λ close to λ0 implies Dλkb(λ0, 0) = 0 for all k ≥ 1, lead to the expansion

r(λ0 + ν︸ ︷︷ ︸
=λ

, α) = ν ·Dλαb(λ0, 0) +
ν2

2
·Dλλαb(λ0, 0) +

αν

2
·Dλααb(λ0, 0)

+
α2

6
·Dαααb(λ0, 0) +Rr(ν, α)

with Rr(ν, α) = O(‖(ν, α)‖3). We clearly have r(λ0, 0) = Dαb(λ0, 0) = 0, and (14) implies
with Table 1 that Dλr(λ0, 0) = Dλαb(λ0, 0) 6= 0. The implicit function theorem then yields
a smooth function α 7→ h(α) which is defined near α = 0, satisfies h(0) = λ0, and such that
in a neighborhood of (0, 0) one has

r(λ, α) = 0 if and only if λ = h(α) .

This establishes the second solution branch α 7→ v0 + αϕ0 +W (h(α), v0 + αϕ0).
In order to finish the proof, we only have to verify the tangency statement regarding the

second solution branch, as well as its opening side. For this, one just has to differentiate
the identity r(h(α), α) = 0 twice with respect to λ. One differentiation implies

Dλr(h(α), α)h′(α) +Dαr(h(α), α) = 0 ,

which for (λ, α) = (λ0, 0) gives Dλr(λ0, 0)h′(0) +Dαr(λ0, 0) = 0. Due to Dλr(λ0, 0) 6= 0, in
combination with Dαr(λ0, 0) = 0, this implies h′(0) = 0. Computing the second derivative
of r(h(α), α) = 0 with respect to α and letting α = 0 finally implies

Dλr(λ0, 0)h′′(0) +Dααr(λ0, 0) = 0 ,

and therefore

h′′(0) = −Dααr(λ0, 0)

Dλr(λ0, 0)
= −Dαααb(λ0, 0)

3Dλαb(λ0, 0)
= −%

3
,

where we also used Table 1. This completes the proof of the proposition.

In order to rigorously determine the location of symmetry-breaking bifurcation points,
we would like to consider an extended system similar to the one defined in (11) and (12).
Unfortunately, if we were to consider this system as is, while the point (λ0, u0, ϕ0) would still
be a zero, it would no longer be isolated and therefore preclude the use of any Newton-type
method for its solution.

The prevalent role of symmetries in the formation of the pitchfork bifurcation allows
for a simple adjustment. For this, we still consider the extended system as defined in (11)
and (12). This time, however, one component of the map Fr induced by the system is
restricted in domain and range to subspaces of X and Y , respectively. That is, we consider
the restriction of the full system F given by

Fr :

{
R×Xs ×X → R× Ys × Y

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])
(16)
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i.e., we restrict the argument u to the space of symmetric elements, and consider the image
of the second component only in the symmetric subspace of Y . Notice that this restriction
to Ys in the image is justified by Lemma 2.5(a). Then the following result holds, which is
in the spirit of a related result in [30], and extended to the case of different Banach spaces
in domain and range.

Theorem 2.12 (Symmetry-Breaking Pitchfork Bifurcations via Extended Systems). Sup-
pose that Assumption 2.1 is satisfied and that F is Z2-equivariant as in Definition 2.4. Then
the following two statements hold.

(a) Suppose that all assumptions of Proposition 2.11 are satisfied, and let ` ∈ X∗ be a
functional such that `(ϕ0) = 1. Then the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) of
the mapping defined in (16) is invertible, i.e., the solution (λ0, u0, ϕ0) ∈ R×Xs ×X
of the extended system

Fr(λ, u, ϕ) = (0, 0, 0) (17)

is an isolated non-degenerate zero.

(b) Conversely, if there exists an ` ∈ X∗ and a ϕ0 ∈ Xa such that (λ0, u0, ϕ0) is a zero of
the nonlinear map Fr, and if the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is invertible,
then the nonlinear operator F satisfies all assumptions of Proposition 2.11.

In other words, the nonlinear problem (2) undergoes a symmetry-breaking pitchfork bifurca-
tion at (λ0, u0) in the sense of Proposition 2.11, if and only if (λ0, u0, ϕ0) ∈ R ×Xs ×Xa

is a non-degenerate zero of (17).

Proof. (a) As before, the Fréchet derivative of Fr is given by

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] =
(
`(ṽ), λ̃ ·DλF (λ0, u0) + Lũ,

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ
)
,

where we use the abbreviation L = DuF (λ0, u0). In the following, we assume that the
projections P and Q have been chosen as in Lemma 2.6(d).

We begin by showing that the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is one-to-one. For

this, assume that D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, 0), and then show that this implies

(λ̃, ũ, ṽ) = (0, 0, 0). To begin, suppose that λ̃ 6= 0 — which will lead to a contradiction.
Due to Lemmas 2.5(a) and 2.6(c) we have DλF (λ0, u0) ∈ Ys = L[Xs] ⊂ R(L), and together
with N(P ) = R(L) this implies PDλF (λ0, u0) = 0. Therefore the second component of the
Fréchet derivative leads to

λ̃(I − P )DλF (λ0, u0) + Lũ = 0 ,

which in turn implies ξ0 = ũ/λ̃, where ξ0 is defined in (15). Plugging this into the third
component of the Fréchet derivative yields

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0] + Lṽ/λ̃ = 0 ,

and applying ψ∗0 , together with N(ψ∗0) = R(L), results in

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0] = 0 .

Since this last identity contradicts (14), we must have λ̃ = 0. The second component of
the Fréchet derivative then implies Lũ = 0, and therefore ũ ∈ N(L) ∩Xs = {0}. Now the
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third equation reduces to Lṽ = 0, which gives ṽ ∈ N(L), i.e., we have ṽ = ηϕ0. The first
component finally yields 0 = `(ṽ) = η · `(ϕ0) = η, i.e., we have ṽ = 0. In other words, the
Fréchet derivative of Fr is one-to-one.

It remains to show that the Fréchet derivative is onto. For this, let (τ, y, z) ∈ R×Ys×Y
be arbitrary. Since y ∈ Ys ⊂ R(L) and N(L) ∩Xs = {0} there exists a unique ũ ∈ Xs such
that

Lũ = y .

Now choose λ̃ via

λ̃ =
ψ∗0z − ψ∗0DuuF (λ0, u0)[ϕ0, ũ]

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]
.

Then in combination with Lemma 2.5(b),(c) and R(L) = N(ψ∗0) one can show that

z −DuuF (λ0, u0)[ϕ0, ũ]− λ̃ · (DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0]) ∈ R(L) ,

and therefore there exists a ṽ ∈ X such that for all η ∈ R we have

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ λ̃ξ0] + L[ṽ + ηϕ0] = z .

Furthermore, due to Lũ = y we have

λ̃ ·DλF (λ0, u0) + L[ũ+ λ̃ξ0] = −λ̃ · Lξ0 + L[ũ+ λ̃ξ0] = Lũ = y .

If we finally define η̃ = τ − `(ṽ), then employing the two previous identities one can easily
verify that

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ+ λ̃ξ0, ṽ + η̃ϕ0] = (τ, y, z) ,

and this completes the proof of (a).
(b) We now turn our attention to the proof of (b), and assume that there exists an ` ∈ X∗

and a triple (λ0, u0, ϕ0) ∈ R × Xs × Xa such that Fr(λ0, u0, ϕ0) = (0, 0, 0), and that the
Fréchet derivative of Fr at this point is invertible. Due to the specific form of the third
component of Fr we have ϕ0 ∈ N(L). If there were another element ϕ1 ∈ N(L) which is
linearly independent of ϕ0, then one can immediately verify that for all α ∈ R the linear
combination ϕα = (1 − α`(ϕ1))ϕ0 + αϕ1 satisfies `(ϕα) = 1, and it is clearly also in the
kernel of L. Thus, we have Fr(λ0, u0, (1 − α`(ϕ1))ϕ0 + αϕ1) = (0, 0, 0) for all α ∈ R, i.e.,
the zero (λ0, u0, ϕ0) is not isolated and therefore the linearization of Fr at this point cannot
be invertible. Thus, the operator Fr satisfies Assumption 2.2.

From our assumptions, we already know that SXu0 = u0, that SXϕ0 = −ϕ0, and we
can choose the projections P and Q as in Lemma 2.6(d). In addition, we have S∗Y ψ

∗
0 =

εY ψ
∗
0 for some as of yet unknown sign εY ∈ {±1}. Finally, since the projection I − P

maps Xs into Ys ∩R(L) and since N(L)∩Xs = {0}, Lemma 2.5(a) shows that there exists
a unique ξ0 ∈ Xs which solves (15).

In order to establish εY = −1, we first show that in fact L[Xs] = Ys. For this, let zs ∈ Ys
be arbitrary. Since the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is invertible, there exists a

triple (λ̃, ũ, ṽ) ∈ R × Xs × X such that D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, zs), which in
turn implies the identity

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ = zs .

If we now decompose ṽ ∈ X as ṽ = ṽs + ṽa ∈ Xs ⊕Xa, then Lemma 2.5(b),(c) implies

Lṽs︸︷︷︸
∈Ys

+ Lṽa︸︷︷︸
∈Ya

= zs︸︷︷︸
∈Ys

−
(
λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ]

)
︸ ︷︷ ︸

∈Ya

,
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and together with Y = Ys ⊕ Ya this leads to Lṽs = zs, i.e., we have L[Xs] = Ys. In view of
Lemma 2.6(c), one therefore has to have εY = −1, i.e., the equalities in (13) hold.

It remains to be shown that the inequality (14) is satisfied. For this, let z ∈ Y \R(L) be
arbitrary. Then the assumptions of (b) imply that there exists a triple (λ̃, ũ, ṽ) ∈ R×Xs×X
such that

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, z) . (18)

Assume for the moment that we have in fact λ̃ = 0. Then the equation for the second
components of (18) implies Lũ = 0, which in turn gives ũ ∈ N(L) ∩Xs = {0}. But in this
case the last component of (18) reduces to Lṽ = z 6∈ R(L), which is impossible. Thus, we
necessarily have to have λ̃ 6= 0, and the second component in (18) implies in combination
with DλF (λ0, u0) ∈ Ys ⊂ R(L) = N(P ) the identity

(I − P )DλF (λ0, u0) + L[ũ/λ̃] = DλF (λ0, u0) + L[ũ/λ̃] = 0 ,

i.e., according to (15) one obtains ũ = λ̃ξ0. Substituting this expression into the last
component of (18) finally yields

λ̃DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, λ̃ξ0] + Lṽ = z ,

and applying ψ∗0 to both sides leads to

λ̃ · (ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]) = ψ∗0z 6= 0 ,

due to ψ∗0Lṽ = 0 and z 6∈ R(L). This establishes (14), and therefore all assumptions of
Proposition 2.11 are satisfied. This completes the proof of the theorem.

Remark 2.13 (Alternative Expressions for ξ0 and ζ0). The proof of the above theorem
shows that the functions ξ0 ∈ Xs and ζ0 ∈ Xs defined in Proposition 2.11 can equivalently
be defined as solutions of the two identities

DuF (λ0, u0)[ξ0] = −DλF (λ0, u0) ,

DuF (λ0, u0)[ζ0] = −DuuF (λ0, u0)[ϕ0, ϕ0] ,

which no longer include the projection P .

As in the previous subsection, the above theorem shows that generically, one can use
standard Newton-type techniques to determine symmetry-breaking pitchfork bifurcation
points as zeros of the system (17). This time, however, the system is restricted to symmetry
subspaces, and this will in fact lead to significant reductions in dimensions later on.

To close this section, let us briefly contrast the reduced system (17) to the one considered
in [30]. As we mentioned earlier, this reference is concerned with a numerical method for
computing the location of symmetry-breaking pitchfork bifurcations, and it employs the
even further restricted system Frr(λ, u, v) = (0, 0, 0), where

Frr :

{
R×Xs ×Xa → R× Ys × Ya

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])
(19)

i.e., they restrict the argument u to the space of symmetric elements, and the argument v
to the space of antisymmetric elements. From a purely computational point of view, this
system leads to a reliable method. We would like to point out, however, that it cannot
easily be used in a computer-assisted proof setting. As the following example shows, even if
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the system Frr(λ, u, v) = (0, 0, 0) has an isolated zero, this does not guarantee the existence
of a symmetry-breaking pitchfork bifurcation as in Proposition 2.11. The reason for this
surprising behavior lies in the fact that even for an islated zero of this further reduced
system, the Fréchet derivative DuF (λ0, u0) does not necessarily have a one-dimensional
kernel, it could be higher-dimensional. While this precludes a computer-assisted proof, it
does work in a purely numerical setting, since in this setting the kernel is almost-surely
one-dimensional.

Example 2.14 (Degenerate Symmetry-Breaking Bifurcations). In this example we show
that even if the reduced system Frr(λ, u, v) = (0, 0, 0), with Frr as in (19), has an isolated
zero, this does not mean that the Fréchet derivative of the underlying map F has a one-
dimensional kernel. To see this, consider the class of functions suggested in [30], which are
of the form

F (λ, (x1, x2)) = (f(λ, x1), f(λ, x2)) ,

where f : R2 → R will be specified later on. If we let X = Y = R2, then one can easily see
that the mapping F : R×X → Y is Z2-equivariant with respect to the symmetries

SX = SY =

(
0 1
1 0

)
,

and the symmetric and antisymmetric subspaces are given by

Xs = {(x1, x2) : x1 = x2} and Xa = {(x1, x2) : x1 = −x2} .

Based on the form of F , if there is a curve (λ, x(λ)) such that f(λ, x(λ)) = 0 holds, then we
automatically have F (λ, x(λ), x(λ)) = (0, 0). Consider now the specific function

f(λ, y) = y − λ

1− y2
.

Then one can easily see that f(λ, y) = 0 whenever we have λ = y − y3. Moreover, if we
define λ± = ±2/(3

√
3) and x± = ±1/

√
3, then

∂f

∂y
(λ±, x±) = 0 ,

which in turn implies

D(x1,x2)F (λ±, x±, x±) =

(
0 0
0 0

)
.

Thus, the Fréchet derivative D(x1,x2)F (λ±, x±, x±) has a two-dimensional kernel on X, and
a one-dimensional kernel on Xa. One can show that despite the fact that (λ±, x±, x±) are
isolated solutions of the extended system Frr(λ, u, v) = (0, 0, 0), the bifurcation at these two
points is not a pitchfork bifurcation in the sense of Proposition 2.11. Rather, at each point
we have a degenerate bifurcation point. See also Figure 2. The same type of degenerate
bifurcation occurs for the coupled cell reaction model with an Arrhenius reaction rate term
in Example 4.1 of [30] with ε = 0. These simple examples illustrate the general problem that
we cannot determine the kernel of the linearization by only looking at the antisymmetric
part of the space.
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Figure 2: Two degenerate symmetry-breaking bifurcations as described in Example 2.14.

2.4 Application to the Diblock Copolymer Equation

In this section we demonstrate how the diblock copolymer model (1) fits into the framework
described above. For more details we refer the reader to [15]. Rather than studying the
model in the form described in the introduction, we apply the transformation u 7→ µ+ u so
that in the following we always consider the mass constraint zero and have incorporated µ
into the equation. After this transformation, finding equilibrium solutions of the evolution
equation is equivalent to solving the nonlinear operator equation

F (λ, u) = − (uxx + λf(µ+ u))xx − λσu = 0 , (20)

where F is a parameter-dependent operator F : R×X → Y on the Hölder-type spaces

X =

{
u ∈ C4,%[0, 1] :

∫ 1

0

u(x) dx = 0 and

ux(0) = uxxx(0) = ux(1) = uxxx(1) = 0} , (21)

Y =

{
u ∈ C0,%[0, 1] :

∫ 1

0

u(x) dx = 0

}
,

and with nonlinearity f(u) = u− u3. In order to keep our notation uniform throughout the
section, we only emphasize the parameter λ in the definition of F , since this is our primary
bifurcation parameter. However, the secondary parameter σ will prove to be essential in
order to find location curves of bifurcation points in the diblock copolymer model. Notice
also that for every choice of the parameters λ, σ, and µ the constant function u ≡ 0
satisfies (20). This solution is referred to as the trivial solution.

The bifurcation diagram of (20) in a neighborhood of the trivial solution has been com-
pletely described in [15] using a standard Lyapunov-Schmidt approach. In order to describe
these results, note that the eigenvalues and eigenfunctions of the negative Laplacian −∆
on the one-dimensional domain Ω = (0, 1) and subject to homogeneous Neumann boundary
conditions, are given by

κk = k2π2 and ϕk(x) =
√

2 cos kπx for k ∈ N . (22)

Since the space X contains a mass constraint, the constant eigenfunction with eigenvalue
zero will play no role in the following and has therefore been omitted. Using this notation,
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it was shown in [15] that the bifurcation points from the trivial solution of (20) are given by

λ(k, σ, µ) =
κ2
k

f ′(µ) · κk − σ
, (23)

where σ ≥ 0. Since we are only interested in bifurcation points at positive λ-values, the
indices k have to satisfy κk > σ/f ′(µ), and one needs to assume that f ′(µ) > 0, i.e. the
total mass µ has to be in the spinodal region.

It was shown in [15], and briefly described in the introduction, that most of the solution
branches of (20) which bifurcate from the trivial solution undergo a variety of secondary
bifurcations. Studying these secondary bifurcation points using rigorous computational
techniques is the main subject of this paper. For this, we need to first show that the nonlinear
mapping F defined above satisfies all the conditions of the abstract results described so far.
This will be accomplished in the following proposition.

Proposition 2.15. Consider the nonlinear operator F defined in the diblock copolymer
equilibrium equation (20), and let the Banach spaces X and Y be defined as in (21). Fur-
thermore, assume that (λ0, u0) ∈ R+×X is arbitrary, and that σ = σ0 > 0 and µ = µ0 ∈ R
are fixed. Then the following hold.

(a) The Fréchet derivative L = DuF (λ0, u0) ∈ L(X,Y ) is a Fredholm operator of index
zero.

(b) The kernel N(L) is spanned by n ∈ N linearly independent solutions ϕ0, . . . , ϕn−1 of
the linear elliptic problem

Lv = − (vxx + λ0f
′(µ0 + u0)v)xx − λ0σ0v = 0 with v ∈ X ,

i.e., the functions ϕk solve this linear differential equation subject to the zero mass
constraint and Neumann boundary conditions as in (1).

(c) If ψ0, . . . , ψn−1 ∈ C4,%[0, 1] denote n linearly independent solutions of the adjoint
problem

L∗w = −wxxxx − λ0f
′(µ0 + u0)wxx − λ0σ0w = 0 ,

subject to the Neumann boundary conditions wx(0) = wxxx(0) = wx(1) = wxxx(1) = 0,
but without imposing any integral constraint, then the range of L is characterized by

R(L) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
.

Proof. Rather than considering X and Y directly, we first consider the standard Hölder
spaces without mass constraint given by

X =
{
u ∈ C4,%[0, 1] : ux(0) = uxxx(0) = ux(1) = uxxx(1) = 0

}
,

Y =
{
u ∈ C0,%[0, 1]

}
.

Then F : R × X → Y is a smooth nonlinear operator. In fact, standard elliptic theory
shows that in this setting, the operator F is a Fredholm operator of index zero: For any
choice of λ0, σ0, µ0 ∈ R and any u0 ∈ X the linearization L = DuF (λ0, u0) is an elliptic
operator with principal term −vxxxx. The latter operator is Fredholm with index zero, since
in the associated Sobolev setting it is in fact self-adjoint. Since the additional terms in L
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are of lower differentiation order, they are a compact perturbation, and (a) follows for L,
but with X and Y replacing X and Y . For more details we refer the reader to [31, pp. 259ff].

We now turn our attention to the operator F restricted to the spaces X and Y which
impose the zero mass constraint. To begin with, it is easy to see that for any λ0 ∈ R
and u0 ∈ X one has F (λ0, u0) ∈ Y , i.e., considering F as an operator from R ×X into Y
is well-defined. Similarly, we have L(X) ⊂ Y . But even more is true. If v ∈ X is arbitrary,
then ∫ 1

0

Lv(x) dx = −λ0σ0 ·
∫ 1

0

v(x) dx ,

due to the imposed boundary conditions and integration by parts. The latter identity,
together with our assumptions λ0 6= 0 and σ0 6= 0, furnishes:

For every v ∈ X \X we have Lv ∈ Y \ Y . (24)

This identity will prove to be essential below. Now let

N (L|X ) = span[ϕ0, . . . , ϕn−1] ⊂ X

denote the nullspace of L|X considered as operator between X and Y, and let

N (L∗|X ) = span[ψ0, . . . , ψn−1] ⊂ X

denote the nullspace of L∗|X considered as operator between X and Y. Due to our above
discussion, both nullspaces have to have the same finite dimension n. Furthermore, prop-
erty (24) immediately shows that

N (L|X ) ⊂ X , i.e., we have dimN (L|X) = dimN (L|X ) = n .

We now turn our attention to the characterization of the range of L. According to the closed
range theorem, the operator L|X : X → Y satisfies

R (L|X ) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
. (25)

It is clear from the form of the adjoint operator L∗|X that the functions ψk are in general
not elements of the space X. Thus, we choose α0, . . . , αn−1 ∈ R and ψ̄0, . . . , ψ̄n−1 ∈ X such
that ψk = αk + ψ̄k for all k = 0, . . . , n − 1. We claim that the functions ψ̄0, . . . , ψ̄n−1 ∈ X
are linearly independent. To see this, assume that γ0, . . . , γn−1 ∈ R are such that

0 =

n−1∑
k=0

γk · ψ̄k =

n−1∑
k=0

γk · (ψk − αk) =

n−1∑
k=0

γkψk −
n−1∑
k=0

γkαk .

Applying L∗|X on both sides, together with the fact that every constant function is an
eigenfunction of L∗|X with eigenvalue −λ0σ0, then furnishes

0 =

n−1∑
k=0

γk L
∗ψk︸ ︷︷ ︸
=0

−L∗
n−1∑
k=0

γkαk︸ ︷︷ ︸
=const

= λ0σ0 ·
n−1∑
k=0

γkαk ,

which due to λ0σ0 6= 0 finally implies

n−1∑
k=0

γkψk =

n−1∑
k=0

γkαk = 0 .
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The assumed linear independence of ψ0, . . . , ψn−1 then yields γ1 = . . . = γn−1 = 0, and
therefore also the reduced functions ψ̄0, . . . , ψ̄n−1 are linearly independent.

After these preparations we can now easily complete the proof of Proposition 2.15. With
the help of (24) one can show that

R (L|X) = R (L|X ) ∩ Y ,

and this furnishes with (25) the identity

R (L|X) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}

=

{
w ∈ Y :

∫ 1

0

ψ̄k(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
.

Since the functions ψ̄0, . . . , ψ̄n−1 are linearly independent in Y , the range R(L|X) ⊂ Y
therefore has codimension n in Y , which equals the dimension of the nullspace N(L|X) ⊂ X.
This completes the proof.

The above proposition shows that despite imposing the mass constraint both in the
domain and in the range of the nonlinear operator, we retain the crucial Fredholm property.
We would also like to stress again the point that the solutions ψ0, . . . , ψn−1 of the adjoint
problem, which are used to characterize the range of L, do not in general satisfy the zero
mass constraint. Finally, if in Proposition 2.15 the kernel is one-dimensional, and if we
define a functional ψ∗0 ∈ Y ∗ via

ψ∗0(w) =

∫ 1

0

ψ0(x)w(x) dx ,

then one can readily see that R(L) = N(ψ∗0), i.e., we are exactly in the situation of Assump-
tion 2.2.

Proposition 2.15 enables us to apply the general results of the previous sections to the
diblock copolymer model. For example, we can use the nonlinear system (11) to determine
saddle-node bifurcation points via a standard Newton iteration, see also Theorem 2.10.
Examples of such saddle-node bifurcation points are shown in Figure 3.

Similarly, we can use symmetry methods to establish the location of symmetry-breaking
pitchfork bifurcation points via the solution of the extended system (16) using Newton’s
method, see also Theorem 2.12. For this, of course, we need to specify suitable symmetry
operations. Consider for example the symmetry operators SX and SY defined via

(Su) (x) = u(1− x) for u ∈ X or u ∈ Y ,

i.e., via the same formula in both X and Y . Since X ⊂ Y is embedded via the identity
map, we can apply Lemma 2.8 with J = I. This implies that if ϕ0 6∈ R(L), then the
signs εX and εY in Lemma 2.6 necessarily have to agree. In the right column of Figure 4,
two equilibrium solutions of the diblock copolymer model are depicted in orange, along
with the kernel functions of the Fréchet derivative DuF (λ0, u0), which are shown in blue.
These solutions are symmetry-breaking pitchfork bifurcation points which lie on the second
and fourth bifurcation branches from the trivial solution curve shown in the right image of
Figure 1. The equilibria are symmetric elements with respect to the above symmetry S,
and the associated kernel functions are antisymmetric. Thus these solutions satisfy the
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Figure 3: Equilibrium solutions u0 (in blue) of the diblock copolymer equation for σ0 = 6,
together with their associated kernel functions ϕ0 (in orange). These two distinct stationary
solutions are both saddle-node bifurcation points at the same parameter value λ0 ≈ 262.9
and the same L2-norm close to 0.562. In fact, the entire non-trivial portion of the bifurcation
diagram is multiply covered. These equilibria are rigorously proved in Theorem 3.7.

symmetry conditions needed for a symmetry-breaking pitchfork bifurcation, and in both of
these cases, Proposition 2.15 will enable us to use Theorem 2.12 to rigorously prove their
existence.

But what about the pitchfork bifurcation points on the first, third and fifth branches
shown in the right image of Figure 1? In these cases, the solutions on the branch are no
longer symmetric elements. If instead we consider µ0 = 0 and define a new symmetry
operator via

(Su) (x) = −u(1− x) for u ∈ X or u ∈ Y ,

then the pitchfork bifurcation points are again symmetric elements. The corresponding
solutions for the first and third branch are shown in the left column of Figure 4 along
with their associated kernel functions. Since the kernel function in the upper left panel is
antisymmetric with respect to this new symmetry, this is a symmetry-breaking bifurcation
point which can be treated using Theorem 2.12, but with respect to the new symmetry. In
contrast, the solution and kernel function of the third branch solution in the lower left panel
are both symmetric with respect to the new symmetry. This implies that our symmetry-
breaking pitchfork bifurcation result no longer applies. In fact, this bifurcation is not a Z2-
symmetry-breaking bifurcation, but rather a symmetry-breaking bifurcation with a different
equivariance group. Thus a different approach is needed to treat this bifurcation, and we
will address this in a future paper.

3 Rigorous Verification of Bifurcations

As already mentioned in Section 2.4, Proposition 2.15 enables us to study saddle-node and
pitchfork bifurcation points via Theorem 2.10 and Theorem 2.12, respectively. In particular,
by Theorem 2.10, proving existence of a non-degenerate isolated zero of (12) implies the
existence of a saddle-node bifurcation, and by Theorem 2.12, proving existence of a non-
degenerate isolated zero of (17) implies the existence of a pitchfork bifurcation.
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Figure 4: Equilibrium solutions u0 (in blue) and associated kernel functions ϕ0 (in orange)
of the diblock copolymer equation for σ0 = 6, with λ0 ≈ 142.1, 53.6, 203.1 for top left, top
right, and bottom right, respectively. All four solutions are pitchfork bifurcation points.
They are the first bifurcation points on the first four branches bifurcating from the trivial
solution in the right image sof Figure 1. Note that as in Figure 3, the bifurcation diagram
is a double cover; corresponding to each of these four solutions, there is another solution at
the same point in the bifurcation diagram. See also Theorems 3.13, 3.14, and 3.15.

In this section, we use the tools of rigorous computing (e.g. see [25]) to verify existence
of bifurcations in the diblock copolymer equation. In order to do so, we begin by presenting
the equivalent of (11) in the space of Fourier coefficients.

Consider the steady states diblock copolymer equation (20) with f(u) = u − u3 and
µ = 0, that is

F (λ, u) = −
(
uxx + λ(u− u3)

)
xx
− λσu = 0.

Plugging the cosine Fourier expansion

u(x) =
∑
k∈Z

ake
ikπx = 2

∑
k≥1

ak cos(kπx), (ak ∈ R, a−k = ak, a0 = 0) (26)
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in F (λ, u) = 0 leads to
∑
k∈Z

gke
ikπx = 0, with

gk(λ, a, σ)
def
= µk(λ, σ)ak − λk2π2(a3)k, (27)

where
µk = µk(λ, σ)

def
= −k4π4 + λk2π2 − λσ, (28)

and
(a3)k

def
=

∑
k1+k2+k3=k

ki∈Z\{0}

a|k1|a|k2|a|k3|.

The relations ak ∈ R, a0 = 0 and a−k = ak imply the new relations gk ∈ R, g−k = gk and
g0 = 0. Hence, we only need to solve gk = 0 for k ≥ 1. Set g

def
= (gk)k≥1.

Now consider the kernel equation associated to the steady states diblock copolymer
equation:

DuF (λ, u)[v] = −
(
vxx + λ(v − 3u2v)

)
xx
− λσv = 0.

Plugging the cosine Fourier expansion of v

v(x) =
∑
k∈Z

bke
ikπx = 2

∑
k≥1

bk cos(kπx), (bk ∈ R, b−k = bk, b0 = 0), (29)

in DuF (λ, u)[v] = 0 leads to
∑
k∈Z

hke
ikπx = 0, with

hk(λ, a, b, σ)
def
= µk(λ, σ)bk − 3λk2π2(a2b)k, (30)

where
(a2b)k

def
=

∑
k1+k2+k3=k

ki∈Z\{0}

a|k1|a|k2|b|k3|.

As above, the relations hk ∈ R, h−k = hk and h0 = 0 implies that we only need to solve
hk = 0 for k ≥ 1.

Let a
def
= (ak)k≥1, b

def
= (bk)k≥1, g

def
= (gk)k≥1 and h

def
= (hk)k≥1.

Recall the definition of the extended operator F given in (11). We re-order the entries
and consider

F(λ, u, v) =

 `(v)− 1
F (λ, u)

DuF (λ, u)[v]


where `(v) = 1 fixes the phase of the eigenvector v. Denote the vector of unknowns by

x = (λ, a, b).

Moving to Fourier space, and recalling (27) and (30), the functional equation F(λ, u, v) = 0
becomes, for a fixed parameter value σ ∈ R,

f(x, σ)
def
=

 η(b)
g(λ, a, σ)
h(λ, a, b, σ)

 , (31)

where

η(b)
def
=

1

b̄k0

bk0
− 1, (32)
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where the condition η(b) = 0 implies that we fix the k0-th component of the eigenvector
to be equal to a fixed value b̄k0

, as η(b) = 0 is equivalent to bk0
= b̄k0

The corresponding

element ` in the dual space is `(b) =
(

1
b̄k0

)
ek0
· b, where (ek0

)j = δk0,j .

The Banach space on which we study the zeroes of f defined in (31) is

X def
= R× `1ν × `1ν , (33)

endowed with the norm

‖x‖X def
= max

{
1

δ
|λ|, ‖a‖1,ν , ‖b‖1,ν

}
, (34)

where δ > 0 is a weight and where

`1ν
def
= {c = {ck}k≥1 : ‖c‖1,ν <∞} , (35)

is equipped with a “weighted ell one norm”

‖c‖1,ν def
= 2

∑
k≥1

|ck|νk =
∑

k∈Z\{0}
|c|k||ν|k|, (36)

for some fixed weight ν ≥ 1.
We solve the problem f(x) = 0 using the field of rigorous numerics (e.g. see [25]). This

requires recalling some basic tools from functional analysis. Since all the results of the
section are classical and can be found for instance in [14], we omit the proofs.

3.1 Functional-Analytic Background

We note that `1ν defined in (35) is a Banach space and moreover has the property of being
a Banach algebra under discrete convolution defined as

a ∗ b =


∑

k1,k2∈Z\{0}
k1+k2=k

a|k1|b|k2|


k≥1

, a = {ak}k≥1, b = {bk}k≥1 ∈ `1ν .

More explicitly, we have the following.

Lemma 3.1. If ν ≥ 1 and a, b ∈ `1ν , then a ∗ b ∈ `1ν and

‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν . (37)

For a sequence of real numbers c = {cn}∞n=1 define the ν−1-weighted supremum norm

‖c‖∞,ν−1
def
=

1

2
sup
n≥1
|cn|

(
1

ν

)n
, (38)

and let
`∞ν−1

def
=
{
c = {cn}∞n=1 : ‖c‖∞,ν−1 <∞

}
.

From the definition of the norm in (38), it follows that given c ∈ `∞ν−1 ,

|cn| ≤ 2νn‖c‖∞,ν−1 , ∀ n ≥ 1. (39)
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Then, given a ∈ `1ν and c ∈ `∞ν−1 , we conclude by (39) that∣∣∣∣∣∣
∑
k≥1

ckak

∣∣∣∣∣∣ ≤
∑
k≥1

|ck||ak| ≤ ‖c‖∞,ν−1

2
∑
k≥1

|ak|νk
 = ‖c‖∞,ν−1‖a‖1,ν . (40)

This bound is used to estimate linear operators of the following type. Denote by B(V,W )
the space of bounded linear operators acting between a Banach space V and a Banach space
W , and denote ‖ · ‖B(V,W ) the operator norm.

Corollary 3.2. Let M (m) = {Mk,n}k,n=1,...,m−1 be an (m− 1)× (m− 1) matrix, {µn}∞n=m

be a sequence of numbers with
|µn| ≤ |µm|,

for all n ≥ m, and M : `1ν → `1ν be the linear operator defined by

Mb =


M (m) 0

µm
0 µm+1

. . .




b(m)

bm
bm+1

...

 .
Here b(m) = (b1, . . . , bm−1)T ∈ Rm−1. Then M ∈ B(`1ν , `

1
ν) is a bounded linear operator and

‖M‖B(`1ν ,`
1
ν) = max(K, |µm|), (41)

where

K
def
= max

1≤n≤m−1

1

νn

m−1∑
k=1

|Mk,n|νk. (42)

Lemma 3.3. Given ν ≥ 1, k ≥ 1 and a ∈ `1ν , the function lka : `1ν → R defined by

lka(h)
def
= (a ∗ h)k =

∑
k1+k2=k

k1,k2∈Z\{0}

a|k1|h|k2|

with h ∈ `1ν , is a bounded linear functional, and

‖lka‖ = sup
‖h‖1,ν≤1

∣∣lka(h)
∣∣ ≤ 1

2
sup
j≥1

(a|k+j| + a|k−j|)

νj
. (43)

Fix a truncation mode to be m. Given h ∈ `1ν , set

h(m) def
= (h1, . . . , hm−1, 0, 0, . . .) ∈ `1ν

h(I) def
= h− h(m) ∈ `1ν .

Corollary 3.4. Let N ∈ N and let ᾱ = (ᾱ1, . . . , ᾱN , 0, 0, . . .) ∈ `1ν . Suppose that 1 ≤ k < m

and define l̂kᾱ ∈ (`1ν)∗ by

l̂kᾱ(h)
def
= (ᾱ ∗ h(I))k =

∑
k1+k2=k

k1,k2∈Z\{0}

ᾱ|k1|h
(I)
|k2|.

Then, for all h ∈ `1ν such that ‖h‖1,ν ≤ 1,∣∣∣l̂kᾱ(h)
∣∣∣ ≤ Ψk(ᾱ)

def
= max

(
max

m≤j≤N−k
|ᾱk+j |
νj

, max
m≤j≤k+N

|ᾱ|k−j||
νj

)
. (44)
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3.2 The General Rigorous Computational Method

In this section, we present a general method to prove existence and compute global smooth
solution curves of f(x, σ) = 0 in the Banach space X as defined in (33). The method is
based on the radii polynomial approach, first introduced in [9]. The version of the approach
we use here is a direct application of the work [5] and is strongly influenced by the rigorous
branch following method of [26]. The idea is to compute a set of numerical approximations
{x̄0, . . . , x̄j} of f(x, σ) = 0 at the parameter values {σ0, . . . , σj} by considering a finite
dimensional projection, to use the approximations to construct a global continuous curve
of piecewise linear interpolations between the x̄i’s and to apply the uniform contraction
theorem on tubes centered at each segment to conclude about the existence of a unique
smooth solution curve of f = 0 nearby the piecewise linear curve of approximations.

3.2.1 Construction of a Piecewise Linear Curve of Approximations

To construct a piecewise linear curve of approximations of f(x, σ) = 0, we consider a finite
dimensional projection f (m) of f whose dimension depends on m. Given c = (ck)k≥1 ∈ `1ν
denote by c(m) = (c1, . . . , cm−1) ∈ Rm−1 a finite part of c of size m − 1. Denote x(m) =
(λ, a(m), b(m)) ∈ R2m−1. In the remaining of the section, (·)(m) denotes considering this
finite dimensional projection. Reversely, when we have some finite dimensional vector x(m),
x denotes the infinite vector obtained by completing x(m) with zeros.

Consider a finite dimensional projection f (m) of (31) given by

f (m)(x(m), σ) =

 η(x(m))

g(m)(x(m), σ)
h(m)(x(m), σ)

 , (45)

where g(m)(x(m), σ) ∈ Rm−1 (resp. h(m)) corresponds to the finite part of g (resp. h) of
size m − 1. We have that f (m) : R2m−1 × R → R2m−1. Assume that using a standard
parameter continuation (i.e. a predictor-corrector algorithm based on Newton’s method) in
σ, we compute a set {x̄0, . . . , x̄j} of approximations at the parameter values {σ0, . . . , σj}
respectively that defines a piecewise linear approximation curve (see Figure 5). The next
step is to show existence of a unique smooth solution curve C of f = 0 nearby the piecewise
linear curve of approximations, as portrayed in Figure 5. This task is twofold. First, one
shows the existence of a unique portion of solution curve C(i) in a small tube centered at the
segment {(1 − s)x̄i + sx̄i+1 | s ∈ [0, 1]}. This is done in Theorem 3.5. Second, one shows
that

C def
=

j−1⋃
i=0

C(i)

is a global continuous solution curve of f(x, σ) = 0.

3.2.2 Uniform Contraction and the Radii Polynomial Approach

Let us define what is required to prove existence of some portion of curve C(i). Without
loss of generality, let us introduce the idea to prove the existence of C(0) that is the piece of
curve close to the segment [x̄0, x̄1]. For any s in [0, 1], we set

x̄s
def
= (1− s)x̄0 + sx̄1 = x̄0 + s∆x̄, where ∆x̄

def
= x̄1 − x̄0 (46)

σs
def
= (1− s)σ0 + sσ1 = σ0 + s∆σ, where ∆σ

def
= σ1 − σ0. (47)
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Figure 5: Piecewise linear curve approximation (in black) constructed using parameter continuation
and existence of a global solution curve C of f = 0 (in blue) nearby the approximations

Then we define, still for s in [0, 1], the Newton-like operator

Ts(x)
def
= x−Af(x, σs), (48)

where A is an injective linear operator approximating the inverse of Df(x̄0, σ0). Denote
x̄0 = (λ̄0, ā0, b̄0). In the sequel, we use the notation x = (x1, x2, x3) with x1 = λ, x2 = a
and x3 = b. To obtain the operator A, assume that

• the Jacobian matrix Df (m)(x̄0, σ0) has been computed;

• an approximate inverse A(m) of Df (m)(x̄0, σ0) has been computed;

• A(m) is injective. In practice, showing that ‖I −A(m)Df (m)(x̄0, σ0)‖ < 1 is sufficient
to prove that A(m) is injective.

Denote A(m) block-wise as

A(m) =

 A
(m)
11 A

(m)
12 A

(m)
13

A
(m)
21 A

(m)
22 A

(m)
23

A
(m)
31 A

(m)
32 A

(m)
33

 ∈ R(2m−1)×(2m−1), (49)

with A
(m)
11 ∈ R, A

(m)
1j ∈ R1×(m−1) for j = 2, 3, A

(m)
i1 ∈ R(m−1)×1 for i = 2, 3 and A

(m)
ij ∈

R(m−1)×(m−1) for 2 ≤ i, j ≤ 3. The operator A which acts as an approximate inverse for

Df(x̄0, σ0) =

 ∂λη(x̄0) Daη(x̄0) Dbη(x̄0)
∂λg(x̄0, σ0) Dag(x̄0, σ0) Dbg(x̄0, σ0)
∂λh(x̄0, σ0) Dah(x̄0, σ0) Dbh(x̄0, σ0)


is given block-wise by

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (50)

where
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• A11 = A
(m)
11 ∈ R;

• A1j ∈ B
(
`1ν ,R

)
for 2 ≤ j ≤ 3: for xj ∈ `1ν , A1jxj = A

(m)
1j x

(m)
j ∈ R;

• Ai1 ∈ `1ν for 2 ≤ i ≤ 3: for x1 ∈ R, Ai1x1 = (A
(m)
i1 x1, 0∞) ∈ `1ν ;

• Aij ∈ B
(
`1ν , `

1
ν

)
for 2 ≤ i, j ≤ 3: for xj ∈ `1ν ,

(Aijxj)k =

 (A
(m)
ij x

(m)
j )k, k = 1, . . . ,m− 1,

δi,j
1

µk(λ̄0, σ0)
(xj)k, k ≥ m,

where δi,j equals 1 if i = j and 0 otherwise.

Combining the above, A is a linear operator which acts on x = (x1, x2, x3) ∈ X component-
wise as

(Ax)i =

3∑
j=1

Aijxj ,

with (Ax)1 ∈ R and (Ax)i ∈ `1ν , for i = 2, 3.
Moreover, define the linear operator

A† =

 0 0 A†13

A†21 A†22 0

A†31 A†32 A†33

 ,
which acts on c = (c1, c2, c3) component-wise as

(A†c)1 = A†13c3
def
= Dbη(x̄0)c3

(A†c)2 =

3∑
j=1

A†2jcj
def
= ∂λg

(m)(x̄0, σ0)c1 +A†22c2

(A†c)3 =

3∑
j=1

A†3jcj
def
= ∂λh

(m)(x̄0, σ0)c1 +A†32c2 +A†33c3

where for i, j = 2, 3, A†i,jcj is defined component-wise by

(
A†22c2

)
k

=

{ (
Dag

(m)(x̄0, σ0)c
(m)
2

)
k
, 1 ≤ k < m

µk(λ̄0, σ0)(c2)k, k ≥ m(
A†32c2

)
k

=

{ (
Dah

(m)(x̄0, σ0)c
(m)
2

)
k
, 1 ≤ k < m

0, k ≥ m(
A†33c3

)
k

=

{ (
Dbh

(m)(x̄0, σ0)c
(m)
3

)
k
, 1 ≤ k < m

µk(λ̄0, σ0)(c3)k, k ≥ m.

The operator A† acts as an approximation for Dxf(x̄0, σ0), and is used in the radii
polynomial approach, which we now present.
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Theorem 3.5 (Radii Polynomial Approach). Recall the definitions of f , x̄s, σs and A,
given respectively in (31), (46), (47) and (50). Let Y0, Z0, Z1, Z2 ≥ 0 be bounds satisfying

‖Af(x̄s, σs)‖X ≤ Y0, ∀ s ∈ [0, 1] (51)

‖I −AA†‖B(X,X) ≤ Z0 (52)

‖A[Dxf(x̄0, σ0)−A†]‖B(X,X) ≤ Z1 (53)

‖A[Dxf(x̄s + b, σs)−Dxf(x̄0, σ0)]‖B(X,X) ≤ Z2(r), ∀ b ∈ Br(0) and ∀ s ∈ [0, 1]. (54)

Define the radii polynomial

p(r)
def
= Z2(r)r + (Z1 + Z0 − 1)r + Y0. (55)

If there exists r0 > 0 such that
p(r0) < 0,

then there exists a C∞ function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that
f(x̃(s), σs) = 0, ∀ s ∈ [0, 1].

Furthermore, these are the only solutions in the tube
⋃
s∈[0,1]Br0(x̄s).

Proof. The idea is to prove that for every s ∈ [0, 1], the operator Ts defined in (48) satisfies
first that Ts : Br0(x̄s)→ Br0(x̄s) and then that Ts is a contraction. For each s ∈ [0, 1], the
contraction mapping theorem implies the existence of a unique x̃(s) ∈ Br0(x̄s) such that
f(x̃(s), σs) = 0. The fact that the function x̃(s) follows from an application of the uniform
contraction principle on the mapping

T̃ :

{
[0, 1]×Br(0) −→ Br(0)

(s, w) 7−→ T̃ (s, w)
def
= w −Af(w + x̄s, σs).

3.3 The Radii Polynomial for Saddle-Node Bifurcations

Recall that by considering a Galerkin projection f (m) : R2m−1×R→ R2m−1, one computed
two solutions x̄0 = (λ̄0, ā0, b̄0) at σ0 and x̄1 = (λ̄1, ā1, b̄1) at σ1 such that f (m)(x̄0, σ0) ≈ 0
and f (m)(x̄1, σ1) ≈ 0. Denote

∆x̄ = x̄1 − x̄0 = (λ̄1 − λ̄0, ā1 − ā0, b̄1 − b̄0) = (∆λ̄,∆ā,∆b̄) and ∆σ = σ1 − σ0.

In order to apply the radii polynomial approach (Theorem 3.5) to the problem (31), we
compute the bounds Y0, Z0, Z1 and Z2(r) satisfying (51), (52), (53) and (54), respectively.

3.3.1 The bound Y0

Recall that the bound Y0 satisfies (51). Denote ξs = (λ̄s, ās, b̄s, σs) and ξ = (λ, a, b, σ). Since
ξs = ξ0 + s(ξ1 − ξ0), then using Taylor’s theorem

Af(x̄s, σs) = Af(ξs) = Af(ξ0) + sADξf(ξ0)(ξ1 − ξ0) +R(ξs),
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where f(ξ0) = f(x̄0, σ0), Dξf(ξ0)(ξ1 − ξ0) = Dxf(x̄0, σ0)∆x̄+ ∂f
∂σ (x̄0, σ0)∆σ, and

‖R(ξs)‖X ≤ sup
s,t∈[0,1]

‖s
2

2
AD2

ξf(ξt)(ξ1− ξ0, ξ1− ξ0)‖X =
1

2
sup
t∈[0,1]

‖AD2
ξf(ξt)(ξ1− ξ0, ξ1− ξ0)‖X

Recalling (46), (47), ξ1−ξ0 = (λ̄1, ā1, b̄1, σ1)−(λ̄0, ā0, b̄0, σ0) = (x̄1−x̄0, σ1−σ0) = (∆x̄,∆σ).
Note that

D2
ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0) =

 0
D2
ξg(ξt)(ξ1 − ξ0, ξ1 − ξ0)

D2
ξh(ξt)(ξ1 − ξ0, ξ1 − ξ0)

 , (56)

where(
D2
ξg(ξt)(ξ1 − ξ0, ξ1 − ξ0)

)
k

= −2∆λ̄∆σ(āt)k + 2(k2π2∆λ̄−∆λ̄σt −∆σλ̄t)(∆ā)k

− 6k2π2
(
∆λ̄(ā2

t∆ā)k + λ̄t(∆ā
2āt)k

)(
D2
ξh(ξt)(ξ1 − ξ0, ξ1 − ξ0)

)
k

= −2∆λ̄∆σ(b̄t)k + 2(k2π2∆λ̄−∆λ̄σt −∆σλ̄t)(∆b̄)k

− 6k2π2
(
∆λ̄(ā2

t∆b̄)k + λ̄t(∆ā
2b̄t)k

)
− 12k2π2

(
∆λ̄(ātb̄t∆ā)k + λ̄t(āt∆ā∆b̄)k

)
.

Using interval arithmetic, one can easily compute bounds Y
(0)
0 , Y

(1)
0 and Y

(2)
0 such that

‖Af(ξ0)‖X ≤ Y (0)
0

‖ADξf(ξ0)(ξ1 − ξ0)‖X ≤ Y (1)
0

1

2
sup
t∈[0,1]

‖AD2
ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0)‖X ≤ Y (2)

0

and finally set

Y0
def
= Y

(0)
0 + Y

(1)
0 + Y

(2)
0 . (57)

3.3.2 The bound Z0

Let B
def
= I −AA†, which we express as

B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 .
Setting

Z0
def
= max

|B11|+
1

δ

3∑
j=2

‖B1j‖∞,ν−1 , max
i=2,3

δ‖Bi1‖1,ν +

3∑
j=2

‖Bij‖B(`1ν ,`
1
ν)

 (58)

satisfies the bound (52).

3.3.3 The bound Z1

Given h = (h1, h2, h3) ∈ B1(0) ⊂ X let

z = z(h)
def
= [Dxf(x̄0, σ0)−A†]h,
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which we denote as z = (z1, z2, z3). Note that z1 = 0 and that

(z2)k =

 −3λ̄0k
2π2

(
ā2

0h
(I)
2

)
k
, 1 ≤ k < m

−3λ̄0k
2π2

(
ā2

0h2

)
k
− k2π2

(
ā3

0

)
k
h1, k ≥ m

(59)

(z3)k =

 −3λ̄0k
2π2

(
ā2

0h
(I)
3

)
k
− 6λ̄0k

2π2
(
ā0b̄0h

(I)
2

)
k
, 1 ≤ k < m

−3λ̄0k
2π2

(
ā2

0h3

)
k
− 6λ̄0k

2π2
(
ā0b̄0h2

)
k
− 3k2π2

(
ā2

0b̄0
)
k
h1, k ≥ m

(60)

Using Corollary 3.4, we get that for 1 ≤ k < m,

|(z2)k| ≤ (ẑ2)k
def
= 3|λ̄0|k2π2Ψk(|ā0|2)

|(z3)k| ≤ (ẑ3)k
def
= 3|λ̄0|k2π2

(
Ψk(|ā0|2) + 2Ψk(|ā0b̄0|2)

)
.

The following elementary result is useful to bound the tail quantities involved in z2 and z3.

Lemma 3.6. Let γ1 ≥ 0 and γ2 ≤ 0. Assume that the projection dimension m satisfies

m >

√
λ̄0

π
. (61)

Then, for all k ≥ m, ∣∣∣∣γ1k
2π2 + γ2

µk(λ̄0, σ0)

∣∣∣∣ ≤ γ1

m2π2 − λ̄0
. (62)

Proof. Since m >

√
λ̄0

π , for all k ≥ m, |µk(λ̄0, σ0)| = k4π4 − λ̄0k
2π2 + λ̄0σ0. Then,∣∣∣∣γ1k

2π2 + γ2

µk(λ̄0, σ0)

∣∣∣∣ =

∣∣γ1k
2π2 + γ2

∣∣
k4π4 − λ̄0k2π2 + λ̄0σ0

=

∣∣γ1 + γ2

k2π2

∣∣
k2π2 − λ̄0 + λ̄0σ0

k2π2

≤ γ1

m2π2 − λ̄0
.

Combining Corollary 3.4 with Lemma 3.6, and under the assumption (61), we get that
for any h ∈ B1(0) ⊂ X,

1

δ
|A1,2z2(h)| ≤ ζ1,2 def

=
1

δ

∣∣∣A(m)
1,2

∣∣∣ · ẑ(m)
2 and

1

δ
|A1,3z3(h)| ≤ ζ1,3 def

=
1

δ

∣∣∣A(m)
1,3

∣∣∣ · ẑ(m)
3

and for i = 2, 3,

‖Ai,2z2(h)‖1,ν ≤ ζi,2
def
= 2

m−1∑
k=1

∣∣∣((A
(m)
i,2 )ẑ

(m)
2

)
k

∣∣∣ νk + δi,2
(‖ā0‖1,ν)

2

m2π2 − λ̄0

(
3|λ̄0|+ δ‖ā0‖1,ν

)
‖Ai,3z3(h)‖1,ν ≤ ζi,3

def
= 2

m−1∑
k=1

∣∣∣((A
(m)
i,3 )ẑ

(m)
3

)
k

∣∣∣ νk + δi,3
3‖ā0‖1,ν
m2π2 − λ̄0

(
|λ̄0|‖ā0‖1,ν

+2|λ̄0|‖b̄0‖1,ν + δ‖ā0‖1,ν‖b̄0‖1,ν
)
.
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Using the previous bounds, we conclude that

‖A[Dxf(x̄0, σ0)−A†]‖B(X,X) = sup
h∈B1(0)

‖A[Dxf(x̄0, σ0)−A†]h‖X

= sup
h∈B1(0)

‖Az(h)‖X

≤ sup
h∈B1(0)

max

1

δ

∣∣∣∣∣∣
3∑
j=2

A1,jzj(h)

∣∣∣∣∣∣ ,
∥∥∥∥∥∥

3∑
j=2

A2,jzj(h)

∥∥∥∥∥∥
1,ν

,

∥∥∥∥∥∥
3∑
j=2

A3,jzj(h)

∥∥∥∥∥∥
1,ν


≤ Z1

def
= max

i=1,2,3
(ζi,2 + ζi,3) , (63)

3.3.4 The bound Z2

Recall that we look for a bound Z2 satisfying (54). Fix b ∈ Br(0) and s ∈ [0, 1]. Applying
the Mean Value Inequality three times yields

‖A[Dxf(x̄s + b, σs)−Dxf(x̄0, σ0)]‖B(X,X)

≤ ‖A[Dxf(x̄s + b, σs)−Dxf(x̄s, σs)]‖B(X,X) + ‖A[Dxf(x̄s, σs)−Dxf(x̄0, σs)]‖B(X,X)

+ ‖A[Dxf(x̄0, σs)−Dxf(x̄0, σ0)]‖B(X,X)

≤ sup
w∈Br(x̄s)
u,v∈B1(0)

s∈[0,1]

‖AD2
xf(w, σs)(u, v)‖Xr + sup

s,t∈[0,1]
u,v∈B1(0)

‖AD2
xf(x̄t, σs)(u, v)‖X‖x̄1 − x̄0‖X

+ sup
t∈[0,1]
v∈B1(0)

‖ADx,σf(x̄0, σt)v‖X|σ1 − σ0|.

Define Λ the (unbounded) diagonal operator

(Λa)k = k2π2ak. (64)

Given u = (λu, au, bu), v = (λv, av, bv), w = (λw, aw, bw) ∈ X, a straightforward compu-
tation yields that D2

xf(w, σs)(u, v) ∈ X satisfies(
D2
xf(w, σs)(u, v)

)
1

= 0(
D2
xf(w, σs)(u, v)

)
2

= D2
xg(w, σs)(u, v)

= (Λ− σsI)(λuav + λvau)

− 3Λ
(
λu(aw)2av + λv(aw)2au + 2λwawauav

)(
D2
xf(w, σs)(u, v)

)
3

= D2
xh(w, σs)(u, v)

= (Λ− σsI)(λubv + λvbu)

− 3Λ
(
λu(2awavbw + (aw)2bv) + λv(2awaubw + (aw)2bu)

)
− 6Λλw (auavbw + auawbv + awavbu) .

Hence, for i = 1, 2, 3, and given u, v ∈ B1(0) and any w = (λw, aw, bw) ∈ X,∥∥Ai,2D2
xg(w, σs)(u, v)

∥∥(i) ≤ α̂i,2(w)
def
= 2δα

(1)
i,2 + 6α

(2)
i,2 ‖aw‖1,ν (δ‖aw‖1,ν + |λw|)∥∥Ai,3D2

xh(w, σs)(u, v)
∥∥(i) ≤ α̂i,3(w)

def
= 2δα

(1)
i,3 + 3α

(2)
i,3

(
4δ‖aw‖1,ν‖bw‖1,ν

+ 2δ‖aw‖21,ν + 2|λw|(‖bw‖1,ν + 2‖aw‖1,ν)
)
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where ‖·‖(1)
= | · | and ‖·‖(i) = ‖ · ‖1,ν for i, j = 2, 3, and where

α
(1)
1,j

def
= sup

s∈[0,1]

‖A1,j(Λ− σsI)‖∞,ν−1 , α
(2)
1,j

def
= ‖A1,jΛ‖∞,ν−1

α
(1)
i,j

def
= sup

s∈[0,1]

‖Ai,j(Λ− σsI)‖B(`1ν ,`
1
ν) , α

(2)
i,j

def
= ‖Ai,jΛ‖B(`1ν ,`

1
ν) .

so that

‖AD2
xf(w, σs)(u, v)‖X ≤ max

i=1,2,3
(α̂i,2(w) + α̂i,3(w)) .

Moreover,

(Dx,σf(x̄0, σt)v)1 = 0

(Dx,σf(x̄0, σt)v)2 = Dx,σg(x̄0, σt)v = −λvā0 − λ̄0a
v

(Dx,σf(x̄0, σt)v)3 = Dx,σh(x̄0, σt)v = −λv b̄0 − λ̄0b
v.

Hence, for i = 1, 2, 3,

‖Ai,2Dx,σg(x̄0, σt)v‖(i) ≤ β̂i,2 def
= βi,2

(
‖ā0‖1,ν + |λ̄0|

)
‖Ai,3Dx,σh(x̄0, σt)v‖(i) ≤ β̂i,3 def

= βi,3
(
‖b̄0‖1,ν + |λ̄0|

)
,

where
β1,j

def
= ‖A1,j‖∞,ν−1 and βi,j

def
= ‖Ai,j‖B(`1ν ,`

1
ν) for j = 2, 3.

Define
â

def
= sup

s∈[0,1]

‖ās‖1,ν , b̂
def
= sup

s∈[0,1]

‖b̄s‖1,ν , λ̂
def
= sup

s∈[0,1]

|λ̄s|

and assuming that r ≤ r∗, we can conclude that

sup
w∈Br(x̄s)
u,v∈B1(0)

s∈[0,1]

‖AD2
xf(w, σs)(u, v)‖X ≤ sup

w∈Br(x̄s)

max
i=1,2,3

(α̂i,2(w) + α̂i,3(w))

≤ Z(2)
2

def
= max

(
1

δ
Z

(2)
2,1 , Z

(2)
2,2 , Z

(2)
2,3

)
,

where

Z
(2)
2,i

def
= 2δα

(1)
i,2 + 6α

(2)
i,2 (â+ r∗)(δâ+ λ̂+ 2δr∗)

+ 2δα
(1)
i,3 + 3α

(2)
i,3

(
4δ(â+ r∗)(b̂+ r∗) + 2δ(â+ r∗)

2 + 2(λ̂+ δr∗)(2â+ b̂+ 3r∗)
)
.

Moreover,

sup
s,t∈[0,1]
u,v∈B1(0)

‖AD2
xf(x̄t, σs)(u, v)‖X‖x̄1 − x̄0‖X ≤ Z(1)

2
def
= max

(
1

δ
Z

(1)
2,1 , Z

(1)
2,2 , Z

(1)
2,3

)
‖x̄1 − x̄0‖X,

where

Z
(1)
2,i

def
= 2δα

(1)
i,2 + 6α

(2)
i,2 â(δâ+ λ̂) + 2δα

(1)
i,3 + 3α

(2)
i,3

(
4δâb̂+ 2δâ2 + 2λ̂(2â+ b̂)

)
.

36



Setting

Z
(0)
2

def
= max

(
1

δ

(
β̂1,2 + β̂1,3

)
, β̂2,2 + β̂2,3 , β̂3,2 + β̂3,3

)
|σ1 − σ0|,

we let
Z2(r)

def
= Z

(2)
2 r + Z

(1)
2 + Z

(0)
2 , (65)

which is by construction a bound satisfying (54).
Combining (57), (58), (63) and (65) leads to the radii polynomial

p(r)
def
= Z2(r)r − (1− Z0 − Z1)r + Y0 (66)

= Z
(2)
2 r2 − (1− Z0 − Z1 − Z(1)

2 − Z(0)
2 )r + Y0.

Recall that the radii polynomial approach consists of applying Theorem 3.5, that is to
find a radius r0 > 0 such that the radii polynomial (66) satisfies p(r0) < 0. This implies
the existence of a C∞ function x̃ : [0, 1] → ⋃

s∈[0,1]Br0(x̄s) such that f(x̃(s), σs) = 0, for

all s ∈ [0, 1]. Using the radii polynomial (66), we present in Section 3.5.1 computer-assisted
proofs providing existence of three smooth global branches of saddle-node bifurcations in
the (σ, λ) parameter space.

3.4 The Radii Polynomial for Pitchfork Bifurcations

We consider two symmetries S1, S2 given by

(S1u)(y)
def
= −u(1− y) and (S2u)(y)

def
= u(1− y) (67)

and for i = 1, 2, define

X(i)
s = {u ∈ X : Siu = u} and X(i)

a = {v ∈ X : Siv = −v} .

The corresponding Banach spaces in Fourier space are given by

X(1)
s =

{
a = (ak)k≥1 ∈ `1ν : a2j = 0, for all j ≥ 1

}
X(1)
a =

{
b = (bk)k≥1 ∈ `1ν : b2j−1 = 0, for all j ≥ 1

}
and

X(2)
s =

{
a = (ak)k≥1 ∈ `1ν : a2j−1 = 0, for all j ≥ 1

}
X(2)
a =

{
b = (bk)k≥1 ∈ `1ν : b2j = 0, for all j ≥ 1

}
.

Given i ∈ {1, 2}, define the Banach space

X(i) = R×X(i)
s × `1ν

endowed, given a weight δ > 0, with the weighed norm

‖x‖X(i) = max

(
1

δ
|λ|, ‖a‖(i)1,ν , ‖b‖1,ν

)
, (68)

where

‖a‖(i)1,ν = 2
∑
k≥1

|ak|νk =


2
∑
j≥1

|a2j−1|ν2j−1, i = 1

2
∑
j≥1

|a2j |ν2j , i = 2.
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Recall that for k ≥ 1,
µk(λ)

def
= −k4π4 + λk2π2 − λσ

and recalling from (27) and from (30),

gk(λ, a) = µk(λ)ak − λk2π2(a3)k

hk(λ, a, b) = µk(λ)bk − 3λk2π2(a2b)k.

Let x = (λ, a, b) ∈ R×X(i)
s × `1ν , then define fr by

fr(x) =

 η(b)
g(λ, a)
h(λ, a, b)

 , (69)

where η(b) = 1
b̄k0

bk0
−1, that is η(b) = 0 implies that the k0-th component of the eigenvector

b equals the fixed value b̄k0
.

Given a ∈ X(1)
s , that is a = (ak)k≥1 such that a2j = 0 for all j ≥ 1, then

g2j(λ, a) = µ2j(λ)a2j − λ(2j)2π2(a3)2j

= µ2j(λ)a2j − λ(2j)2π2
∑

k1+k2+k3=2j

ki∈Z\{0}

a|k1|a|k2|a|k3| = 0,

since for any (k1, k2, k3) ∈ (Z \ {0})3, the relation k1 + k2 + k3 = 2j implies that there must
be i ∈ {1, 2, 3} such that ki is even, and so a|ki| = 0.

Similarly, given a ∈ X(2)
s , that is a = (ak)k≥1 such that a2j−1 = 0 for all j ≥ 1, then

g2j−1(λ, a) = µ2j−1(λ)a2j−1 − λ(2j − 1)2π2(a3)2j−1

= µ2j−1(λ)a2j−1 − λ(2j − 1)2π2
∑

k1+k2+k3=2j−1

ki∈Z\{0}

a|k1|a|k2|a|k3| = 0,

since for any (k1, k2, k3) ∈ (Z \ {0})3, the relation k1 + k2 + k3 = 2j − 1 implies that there
must be i ∈ {1, 2, 3} such that ki is odd, and so a|ki| = 0.

To verify rigorously a pitchfork bifurcation, we use the general approach of Section 3.2,
as in the case of saddle-node bifurcations. All estimates are similar as in the case of saddle-
node bifurcations, expect that in this case we consider the norm ‖ ·‖X(i) given in (68), where
the index i depends on the symmetry of the bifurcation. This implies that all expansions
are the same, but the norms are replaced by (68). Using these new expansions, we define
the equivalent radii polynomial

p(r) = Z
(2)
2 r2 − (1− Z0 − Z1 − Z(1)

2 − Z(0)
2 )r + Y0. (70)

3.5 Results

For all the computer-assisted proofs, the weight δ in the definition the norm of the Banach
spaces is fixed to be equal to the numerical value λ̄0. This choice of weight δ is used to
compensate the fact that the variable λ sometimes has several orders of magnitude more
than the ‖a‖1,ν and ‖b‖1,ν . All proofs are performed using MATLAB codes available at
[16] and use the interval arithmetic package INTLAB [22].
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3.5.1 Saddle-Node Bifurcation Points

We begin by presenting three theorems of existence of saddle-node bifurcations at the fixed
parameter value σ = 6, which we proved using the radii polynomial (66) and Theorem 3.5.

Theorem 3.7. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a saddle-
node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 262.9276507797089
and r = 1.1×10−10. The point ũ0 is given by ũ0(y) = 2

∑
k≥1 ãk cos(kπy), with ‖ã− ā‖1,ν ≤

r, where the Fourier coefficients of ā are given in Table 9. Moreover, ‖ũ0 − ū0‖C0 ≤
1.1× 10−10, where ū0(y) = 2

∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.7 is portrayed in Figure 3.

Proof. Fix ν = 1.01 and m = 48. The Fourier coefficients associated to the numerical
approximation x̄0 ∈ R2m−1 = R95 are given in the MATLAB datafile pt0 sn.mat. The
MATLAB script script proof sn pt0.m computes the coefficients of the radii polynomials
and verifies that for r = 1.1 × 10−10, the radii polynomial satisfies defined in (55) p(r) <
0. Therefore by Theorem 3.5, there exists a unique x̃ = (λ̃0, ã, b̃) ∈ Br(x̄0) ⊂ X such
that f(x̃) = 0 where f is given in (31). The solution x̃ corresponds to an isolated non-
degenerate zero (λ̃0, ũ0, ṽ0) solving the equation F(λ, u, v) = (0, 0, 0). By Proposition 2.15,
Theorem 2.10 and Proposition 2.9, it follows that (1) undergoes a saddle-node bifurcation
at (λ̃0, ũ0).

Theorem 3.8. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a saddle-
node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 681.3850215638124
and r = 6.2×10−13. The point ũ0 is given by ũ0(y) = 2

∑
k≥1 ãk cos(kπy), with ‖ã− ā‖1,ν ≤

r, where the Fourier coefficients of ā are given in Table 10. Moreover, ‖ũ0 − ū0‖C0 ≤
6.2× 10−13, where ū0(y) = 2

∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.8 is portrayed in the left part of Figure 6.

Proof. The proof is similar to the proof of Theorem 3.7. In this case ν = 1.01, m = 89,
and the MATLAB script script proof sn pt1.m computes the coefficients of the radii
polynomials with interval arithmetic and the Fourier coefficients associated to the numerical
approximation x̄0 ∈ R2m−1 = R177 are given in the MATLAB datafile pt1 sn.mat.

Theorem 3.9. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a saddle-
node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 1343.284789160779
and r = 1.1×10−12. The point ũ0 is given by ũ0(y) = 2

∑
k≥1 ãk cos(kπy), with ‖ã− ā‖1,ν ≤

r. Moreover, ‖ũ0 − ū0‖C0 ≤ 1.1× 10−12, where ū0(y) = 2
∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.9 is portrayed in the right part of Fig-
ure 6.

Proof. The proof is similar to the proof of Theorem 3.7. In this case ν = 1.01, m = 121,
and the MATLAB script script proof sn pt2.m computes the coefficients of the radii
polynomials with interval arithmetic and the Fourier coefficients associated to the numerical
approximation x̄0 ∈ R2m−1 = R241 are given in the MATLAB datafile pt2 sn.mat.

Using the radii polynomial approach, we proved the following three results.

Theorem 3.10. There is a branch of saddle-node bifurcations parameterized by the param-
eter σ ∈ [4.6762, 8.8812]. The global branch contains the point of Theorem 3.7 and is a
C∞ function of the parameter σ. The continuous range of parameter λ of the saddle-node
bifurcations over the branch contains the interval λ ∈ [98.72, 1808.99].
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Figure 6: Equilibrium solutions u0 (in blue) of the diblock copolymer equation for σ0 = 6,
together with their associated kernel functions (in red). On left λ0 ≈ 681.4, on right
λ0 ≈ 1343.3. These two distinct stationary solutions are both saddle-node bifurcation
points. The equilibrium on the left (respectively right) is rigorously proved in Theorem 3.8
(respectively Theorem 3.9).

The branch of saddle-node bifurcations proven in Theorem 3.10 is portrayed in red in
Figure 7.

Theorem 3.11. There is a branch of saddle-node bifurcations parameterized by the param-
eter σ ∈ [4.8634, 9.4444]. The global branch contains the point of Theorem 3.8 and is a
C∞ function of the parameter σ. The continuous range of parameter λ of the saddle-node
bifurcations over the branch contains the interval λ ∈ [259.18, 2264.67].

The branch of saddle-node bifurcations proven in Theorem 3.11 is portrayed in green in
Figure 7.

Theorem 3.12. There is a branch of saddle-node bifurcations parameterized by the param-
eter σ ∈ [5.2595, 9.5322]. The global branch contains the point of Theorem 3.9 and is a
C∞ function of the parameter σ. The continuous range of parameter λ of the saddle-node
bifurcations over the branch contains the interval λ ∈ [508.539, 2360.55].

The branch of saddle-node bifurcations proven in Theorem 3.12 is portrayed in blue in
Figure 7.

3.5.2 Pitchfork Bifurcation Points

We begin by presenting three theorems of existence of pitchfork bifurcations at the fixed
parameter value σ = 6, which we proved using the radii polynomial (70) together with
Theorem 3.5.

Theorem 3.13. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a
pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S1 defined in (67), where
λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 142.0626439889047 and r = 2.37 × 10−11. The point ũ0 is
given by the expansion ũ0(y) = 2

∑
j≥1 ã2j−1 cos((2j − 1)πy) with ‖ã− ā‖1,ν ≤ r, where the

Fourier coefficients of ā are given in Table 11. Moreover, ‖ũ0− ū0‖C0 ≤ 2.37×10−11, where
ū0(y) = 2

∑
j≥1 ā2j−1 cos((2j − 1)πy).
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Figure 7: Three global C∞ branches of saddle-node bifurcation points of the diblock copoly-
mer equation. The red (respectively green, blue) branch is proven in Theorem 3.10 (respec-
tively Theorem 3.11, Theorem 3.12).

The bifurcation point of Theorem 3.13 is portrayed in the top left plot of Figure 4.

Proof. Fix ν = 1.01 and m = 46. The Fourier coefficients associated to the numerical
approximation x̄0 ∈ R3m/2 = R69 are given in the MATLAB datafile pt 032.mat. The
MATLAB script proof thm1 pitchfork.m computes the coefficients of the radii polyno-
mials and verifies that for r = 2.37 × 10−11, the radii polynomial satisfies defined in (55)
p(r) < 0. Therefore by Theorem 3.5, there exists a unique x̃ = (λ̃0, ã, b̃) ∈ Br(x̄0) ⊂ X(1)

such that fr(x̃) = 0 where fr is given in (69). The solution x̃ corresponds to an isolated non-
degenerate zero (λ̃0, ũ0, ϕ̃0) solving the equation Fr(λ, u, ϕ) = (0, 0, 0). By Proposition 2.15,
Theorem 2.12 and Proposition 2.11, it follows that (1) undergoes a pitchfork bifurcation at
(λ̃0, ũ0).

Theorem 3.14. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a
pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S2 defined in (67), where
λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 53.58536646961630 and r = 3.28 × 10−13. The point ũ0 is
given by the expansion ũ0(y) = 2

∑
j≥1 ã2j cos(2jπy) with ‖ã− ā‖1,ν ≤ r, where the Fourier

coefficients of ā are given in Table 12. Moreover, ‖ũ0 − ū0‖C0 ≤ 3.28 × 10−13, where
ū0(y) = 2

∑
j≥1 ā2j cos(2jπy).

The bifurcation point of Theorem 3.14 is portrayed in the top right plot of Figure 4.

Proof. The proof is similar to the proof of Theorem 3.13. In this case ν = 1.1, m = 29,
and the MATLAB script proof thm2 pitchfork.m computes the coefficients of the radii
polynomials with interval arithmetic and the Fourier coefficients associated to the numerical
approximation x̄0 ∈ R3(m−1)/2 = R43 are given in the MATLAB datafile pt 105.mat.

Theorem 3.15. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes a
pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S2 defined in (67), where
λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 203.0932198783432 and r = 1.88 × 10−12. The point ũ0 is
given by the expansion ũ0(y) = 2

∑
j≥1 ã2j cos(2jπy) with ‖ã− ā‖1,ν ≤ r, where the Fourier
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Figure 8: (Left) Global C∞ branches of pitchfork bifurcations points of the nonlinear
diblock-copolymer equation (1). The red (respectively green, blue) branch is proven in
Theorem 3.16 (respectively Theorem 3.17, Theorem 3.18). (Right) Zoom-in of the branches.

coefficients of ā are given in Table 13. Moreover, ‖ũ0 − ū0‖C0 ≤ 1.88 × 10−12, where
ū0(y) = 2

∑
j≥1 ā2j cos(2jπy).

The bifurcation point of Theorem 3.15 is portrayed in the bottom right plot of Figure 4.

Proof. The proof is similar to the proof of Theorem 3.13. In this case ν = 1.01, m = 57,
and the MATLAB script proof thm3 pitchfork.m computes the coefficients of the radii
polynomials with interval arithmetic and the Fourier coefficients associated to the numerical
approximation x̄0 ∈ R3(m−1)/2 = R85 are given in the MATLAB datafile pt 174.mat.

Theorem 3.16. There is a branch of pitchfork bifurcations (breaking the symmetry S1)
parameterized by the parameter σ ∈ [4.98384, 7.8852]. The global branch contains the point of
Theorem 3.13 and is a C∞ function of the parameter σ. The continuous range of parameter
λ of the pitchfork bifurcations over the branch contains the interval λ ∈ [49.5782, 456].

The branch of pitchfork bifurcations of Theorem 3.16 is portrayed in red in Figure 8.

Theorem 3.17. There is a branch of pitchfork bifurcations (breaking the symmetry S2)
parameterized by the parameter σ ∈ [0.04618, 7.813]. The global branch contains the point of
Theorem 3.14 and is a C∞ function of the parameter σ. The continuous range of parameter
λ of the pitchfork bifurcations over the branch contains the interval λ ∈ [49.497, 210.735].

The branch of pitchfork bifurcations of Theorem 3.17 is portrayed in green in Figure 8.

Theorem 3.18. There is a branch of pitchfork bifurcations (breaking the symmetry S2)
parameterized by the parameter σ ∈ [0.8353, 9.28807]. The global branch contains the point of
Theorem 3.15 and is a C∞ function of the parameter σ. The continuous range of parameter
λ of the pitchfork bifurcations over the branch contains the interval λ ∈ [167.791, 415.757].

The branch of pitchfork bifurcations of Theorem 3.18 is portrayed in blue in Figure 8.
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k āk
1 3.425518079006526× 10−01

3 −1.974141656767766× 10−01

5 3.282914954203388× 10−02

7 −2.113767170849276× 10−02

9 6.009282870770884× 10−03

11 −2.511019989454085× 10−03

13 9.094914470604478× 10−04

15 −3.384556275954580× 10−04

17 1.276639504135262× 10−04

19 −4.725661956005324× 10−05

21 1.774095811379435× 10−05

23 −6.609023152112926× 10−06

25 2.470638409851695× 10−06

27 −9.226037848187633× 10−07

29 3.445645075514765× 10−07

31 −1.287116825741538× 10−07

33 4.807038316262538× 10−08

35 −1.795559964584755× 10−08

37 6.706444497377878× 10−09

39 −2.504938910570366× 10−09

41 9.356049310264420× 10−10

43 −3.494257722696195× 10−10

45 1.304418365890033× 10−10

47 −4.874587773792928× 10−11

≥48 0

Figure 9: The cosine Fourier coefficients of the saddle-node bifurcation point from Theo-
rem 3.7. We show āk for k ≥ 1. Note that all even coefficients are 0.
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k āk
1 −3.322748897308590× 10−01

3 5.964807310189380× 10−02

5 1.098656423542226× 10−01

7 −7.147163509374215× 10−02

9 4.621259346913079× 10−02

11 −1.499847066658469× 10−02

13 2.771825017383096× 10−03

15 1.361700989591935× 10−03

17 −1.209183257116878× 10−03

19 4.001695298106526× 10−04

21 1.012053583674478× 10−04

23 −2.188388273353959× 10−04

25 1.583392405367557× 10−04

27 −7.312323758516202× 10−05

29 1.946946540531770× 10−05

31 1.490247191381953× 10−06

33 −4.856412723117526× 10−06

35 2.675779467405178× 10−06

37 −4.983777798680973× 10−07

39 −4.341948283537669× 10−07

41 5.122942462431431× 10−07

43 −3.029210231609401× 10−07

45 1.114997949387757× 10−07

47 −1.399986292600402× 10−08

49 −1.413350705303663× 10−08

51 1.234615338731550× 10−08

53 −4.811188646022121× 10−09

55 7.635825922534573× 10−11

57 1.346542437697546× 10−09

59 −1.114761302006941× 10−09

61 5.360571766016584× 10−10

63 −1.403428779571979× 10−10

65 −1.984767195915526× 10−11

67 4.496258857946458× 10−11

69 −2.598922926741918× 10−11

71 6.827356566319794× 10−12

73 2.040570417154504× 10−12

75 −3.518846286971038× 10−12

77 2.242152802281248× 10−12

79 −8.494640661551343× 10−13

81 1.000445609992326× 10−13

83 1.237989407717937× 10−13

85 −1.097953126715571× 10−13

87 4.696530654231161× 10−14

≥88 0

Figure 10: The cosine Fourier coefficients of the saddle-node bifurcation point from Theo-
rem 3.8. We show āk for k ≥ 1. Note that all even coefficients are 0.
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k āk
1 3.543753443245022× 10−01

3 −1.006781087499776× 10−01

5 1.774717239183692× 10−02

7 −4.253838897909598× 10−03

9 9.487830638572718× 10−04

11 −2.154147796091226× 10−04

13 4.890289353907032× 10−05

15 −1.110225418059996× 10−05

17 2.521609074712272× 10−06

19 −5.727445161875873× 10−07

21 1.300994133620561× 10−07

23 −2.955313733270058× 10−08

25 6.713369627113701× 10−09

27 −1.525046630395195× 10−09

29 3.464409773915803× 10−10

31 −7.870055534981058× 10−11

33 1.787837280778145× 10−11

35 −4.061433389832354× 10−12

37 9.226383862676367× 10−13

39 −2.095966548542377× 10−13

41 4.761431600794773× 10−14

43 −1.081662061453402× 10−14

45 2.457248823477995× 10−15

≥46 0

Figure 11: The cosine Fourier coefficients of the pitchfork bifurcation point from Theo-
rem 3.13. We show āk for k ≥ 1. Note that all even coefficients are 0.

k āk
2 1.932032148778461× 10−01

6 −1.228415125053532× 10−03

10 7.745221377996015× 10−06

14 −4.899802649253310× 10−08

18 3.101012396194486× 10−10

22 −1.962774847496414× 10−12

26 1.242372383052349× 10−14

≥27 0

Figure 12: The cosine Fourier coefficients of the pitchfork bifurcation point from Theo-
rem 3.14. We show āk for k ≥ 2. Note that all other coefficients are 0.

k āk
4 2.491592573155594× 10−01

12 −2.427167305846578× 10−03

20 2.379666082383739× 10−05

28 −2.334882400787356× 10−07

36 2.291173981628420× 10−09

44 −2.248336688870471× 10−11

52 2.206286704017840× 10−13

≥53 0

Figure 13: The cosine Fourier coefficients of the pitchfork bifurcation point from Theo-
rem 3.15. We show āk for k ≥ 2. Note that all other coefficients are 0.
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